DOI QR코드

DOI QR Code

Development of Numerical Tank Using Open Source Libraries and Its Application

오픈 소스 라이브러리를 이용한 수치수조 구현 및 적용

  • Park, Sunho (Department of Ocean Engineering, Korea Maritime and Ocean University) ;
  • Rhee, Shin Hyung (Department of Naval Architecture and Ocean Engineering, Seoul National University)
  • 박선호 (한국해양대학교 해양공학과) ;
  • 이신형 (서울대학교 조선해양공학과)
  • Received : 2014.09.25
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

In this paper, ship performance prediction solver was developed using open source computational fluid dynamics (CFD) libraries. The mass- and momentum-conservation equations and turbulent model with a wall function for the turbulent closer were considered. The volume fraction transport equation with a high-resolution interface capturing scheme were selected for free-surface simulation. The predicted wave pattern around KRISO container ship (KCS) using developed program showed good agreement against existing experimental data. For the revolution of a propeller in the propulsive test, general grid interface (GGI) library was used. The predicted propulsive performance showed 7 % difference against experimental data. Two-phase mixture model was developed to simulate a cavitation and applied to a propeller. The sheet cavitation on the propeller was predicted well. From results, the potential of the numerical tank developed by open source libraries was verified by applying it to KCS.

본 논문에서는 소스 코드가 공개된 라이브러리를 이용하여 선박의 성능을 예측할 수 있는 해석 코드를 개발하였다. 질량보존 방정식, 모멘튼 보존방정식, 난류를 고려하기 위해 난류모델과 벽함수를 고려하였다. 자유수면 계산을 위해 볼륨비 수송방정식을 고려하였고, 자유수면의 정확도 높은 계산을 위해 고차 도식을 포함하는 라이브러리를 개발하였다. 개발한 프로그램을 컨테이너선인 KCS에 적용한 결과 실험에서 포착된 자유수면 분포를 잘 예측하였다. 자항성능 평가 시 추진기 회전을 위해 GGI 라이브러리를 사용하였다. 계산결과 실험과 비교해 약 7 % 정도의 정확도로 자항성능을 예측하였다. 캐비테이션 예측을 위해 이상 균질 모델을 포함하는 새로운 라이브러리를 개발하였다. 이상 균질 모델을 추진기에 적용한 결과 일반적으로 발생하는 얇은 층 캐비테이션을 잘 예측하는 것을 확인하였다. 오픈 소스 라이브러리를 이용하여 개발한 수치수조를 KCS에 적용한 결과 오픈 소스 라이브러리에 대한 가능성을 확인하였다.

Keywords

References

  1. Jasak, H.(2009), Open FOAM: open source CFD in research and industry, International Journal of Naval Architecture Ocean Engineering. Vol. 1, pp. 89-94.
  2. Kissling, K., S. Schutz and M. Piesche(2010), Numerical Investigation of the deformation and break-up mechnism droplets in a high-pressure emulsification orifice with a coupled volume-of-fluid/level-set method, 5th OpenFOAM Workshop, Gothenburg, Sweden, June 21-24.
  3. Park, S. and S. H. Rhee(2012), Incompressible and compressible flows with cavitation, 7th OpenFOAM workshop, Darmstadt, German, June 25-28.
  4. Lee, H., S. Park and S. H. Rhee(2014), Dynamic interface compression method for high speed surface craft, 9th OpenFOAM workshop, Zagreb, Croatia, June 23-26.
  5. Shih, T. H., W. W. Liou, A. Shabbir, Z. Yang and J. Zhu (1995), A new k-e eddy-viscosity model for high Reynolds number turbulent flows - model development and validation, Computers & Fluids, Vol. 24, No. 3, pp. 227-238. https://doi.org/10.1016/0045-7930(94)00032-T
  6. Park, D. W. and H. S. Yoon(2014), Effect of grid, turbulence modelling and discretization on the solution of CFD, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 4, pp. 419-425. https://doi.org/10.7837/kosomes.2014.20.4.419
  7. Park, S., S. W. Park, S. H. Rhee, S. B. Lee, J. E. Choi, and S. H. Kang(2012), CFD code development for the prediction of the ship resistance using open source libraries, Journal of Computational Fluids Engineering, Vol. 17, No. 2, pp. 21-27. https://doi.org/10.6112/kscfe.2012.17.2.021
  8. Park, D. W.(2014), Effects of opening condition of the fore body on the resistance and self-propulsion performance of a ship, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 1, pp. 78-85. https://doi.org/10.7837/kosomes.2014.20.1.078
  9. Issa, R. I.(1985), Solution of Implicitly Discretized Fluid Flow Equations by Operator Splitting, Journal of Computational Physics, Vol. 62, pp. 40-65.
  10. van Leer, B.(1979), Towards the Ultimate Conservative Difference Scheme, Journal of computational Physics, Vol. 32, No. 1, pp. 101-136. https://doi.org/10.1016/0021-9991(79)90145-1
  11. Kim, W. J., S. H. Van and D. H. Kim(2001), Measurement of flowd around modern commercial ship models, Vol. 31, pp. 567-578. https://doi.org/10.1007/s003480100332
  12. Rusche, H.(2002), Computational fluid dynamics of dispersed two-phase flows at high phase fractions, Ph.D Thesis, Imperial College of Science, Technology and Medicine.
  13. Roe, P. L.(1985), Some contributions to the modelling of discontinuous flows, 15th Summer Seminar on Applied Mathematics, La Jolla, CA, June 27 - July 8.
  14. Muzaferija, S., M. Peric, P. Sames and T. Schelin(1998), A two-fluid Navier-Stokes solvers to simulate water entry, 22th Symposium on Naval Hydrodynamics, Washington D.C.
  15. Waclawczyk, T. and T. Koronowicz(2008), Remarks on prediction of wave drag using VOF method with interface capturing approach, Archives of Civil and Mechanical Engineering, Vol. 8, pp. 5-14.

Cited by

  1. Numerical Study on Roughness Effect for Axi-symmetry Submerged Body in High Reynolds Number vol.24, pp.2, 2018, https://doi.org/10.7837/kosomes.2018.24.2.246