참고문헌
- Berra, M., Mangialardi, T., & Paolini, A. E. (2003). Use of lithium compounds to prevent expansive alkali-silica reactivity in concrete. Advances in Cement Research, 15(4), 145-154. https://doi.org/10.1680/adcr.2003.15.4.145
- Berube, M. A., & Fournier, B. (1993). Canadian experience with testing for alkali-aggregate reactivity in concrete. Cement & Concrete Composites, 15, 27-47. https://doi.org/10.1016/0958-9465(93)90037-A
- Brough, A. R., Dobson, C. M., Richardson, I. G., & Groves, G. W. (1996). Alkali activation of reactive silicas in cements: In situ 29Si MAS NMR studies of the kinetics of silicate polymerization. Journal of Materials Science, 31, 3365-3373. https://doi.org/10.1007/BF00360736
-
Collins, C. L., Ideker, J. H., Willis, G. S., & Kurtis, K. E. (2004). Examination of the effects of LiOH, LiCl, and
${LiNO_3}$ on alkali-silica reaction. Cement and Concrete Research, 34, 1403-1415. https://doi.org/10.1016/j.cemconres.2004.01.011 - Durand, B. (2000). More results about the use of lithium salts and mineral admixtures to inhibit ASR in concrete. In Proceedings of the 11th international conference on alkali-aggregate reaction (pp. 623-632), Centre de Recherche Interuniversitaire sur le Beton, Quebec, Canada.
- Ekolu, S. O., Thomas, M. D. A., & Hooton, R. D. (2007). Dual effectiveness of lithium salt in controlling both delayed ettringite formation and ASR in concretes. Cement and Concrete Research, 37(6), 942-947. https://doi.org/10.1016/j.cemconres.2007.01.014
- Feng, X., Thomas, M. D. A., Bremner, T. W., Balcom, B. J., & Folliard, K. J. (2005). Studies on lithium salts to mitigate ASR-induced expansion in new concrete: A critical review. Cement and Concrete Research, 35, 1789-1796. https://doi.org/10.1016/j.cemconres.2004.10.013
- Folliard, K. J., Thomas, M. D. A., Fournier, T., Kurtis, K. E., & Ideker, J. H. (2006). Interim recommendations for the use of lithium to mitigate or prevent alkali-silica reaction (ASR). Report no. FHWA-ART-06-073. McLean, VA: Office of Infrastructure Research and Development, Federal Highway Administrator.
- Folliard, K. J., Thomas, M. D. A., & Kurtis, K. E. (2003). Guidelines for the use of lithium to mitigate or prevent ASR. Publication no. FHWA-RD-03-047. McLean, VA: Turner-Fairbank Highway Research Center.
- Freitag, S. A., Goguel, R., & Milestone, N. B. (2003). Alkali silica reaction: Minimising the risk of damage to concrete guidance notes and recommended practice. Technical report. ISSN:1171-4204. Cement & Concrete Association of New Zealand (CCANZ).
- Hooton, R. D. (1995). Test procedures for ASR. In Proceedings of the third annual ICAR symposium: Concrete, bases, and fines. Austin, TX: Center for Aggregates Research. http://aftre.nssga.org/Symposium/1995-31.pdf.
- Hooton, R. D., & Rogers, C. A. (1993). Development of the NBRI rapid mortar bar test leading to its use in North America. Construction and Building Materials, 7(3), 145-148. https://doi.org/10.1016/0950-0618(93)90051-D
- Hudec, P., & Banahene, N. (1993). Chemical treatment and additives for controlling alkali reactivity. Cement & Concrete Composites, 15, 21-26. https://doi.org/10.1016/0958-9465(93)90036-9
- Islam, M. S. (2010). Performance of Nevada's aggregates in alkali-aggregate reactivity of Portland cement concrete. Doctoral dissertation. Las Vegas, NV: University of Nevada.
- Islam, M. S., & Akhtar, S. (2013). A critical assessment to the performance of alkali-silica reaction (ASR) in concrete. Canadian Chemical Transactions, 2(4), 253-266.
- Islam, M., & Ghafoori, N. (2013). Evaluation of alkali-silica reactivity using aggregate geology, mortar bars, concrete prisms and ASR kinetic model. Journal of Materials Science Research, 2(2), 103-117.
- Johnston, D., Stokes, D., & Surdahl, R. (2002). Construction of lithium/fly ash concrete pavement test sections in interstate 90 in SD. TRB annual meeting CD-ROM.
- Lane, D. S. (2002). Laboratory investigation of lithium-bearing compounds for use in concrete. Report no. VTRC 02-R16. Charlottesville,VA:Virginia TransportationResearch Council.
- Li, X. (2005). Mitigating alkali silica reaction in recycled concrete. Ph.D. dissertation, Department of Civil Engineering, University of New Hampshire, Durham, NH.
- Malvar, J., Cline, G. D., Burke, D., Rollings, R., Sherman, T., & Greene, J. (2001). Alkali-silica reaction mitigation state-ofthe-art. Technical report no. TR-2195-SHR. Washington Navy Yard, DC: Naval Facilities Engineering Service Center.
- Malvar, J., & Lenke, L. R. (2006). Efficiency of fly ash in mitigating alkali-silica reaction based on chemical composition. ACI Materials Journal, 103(5), 319-326.
- McCoy, W. J., & Caldwell, A. G. (1951). A new approach to inhibiting alkali-aggregate expansion. Journal of the American Concrete Institute, 47, 693-706.
- McKeen, R. G., Lenke, L. R., & Pallachulla, K. K. (1998). Mitigation of alkali-silica reactivity in New Mexico. Work performed for New Mexico State Highway and Transportation Department, Materials Research Center, ATR Institute, University of New Mexico, Albuquerque, NM.
- Millard, M. J., & Kurtis, K. E. (2008). Effects of lithium nitrate admixture on early-age cement hydration. Cement and Concrete Research, 38(4), 500-510. https://doi.org/10.1016/j.cemconres.2007.11.009
- Ramyar, K., Copuroglu, O., Andic, O., & Fraaij, A. L. A. (2004). Comparison of alkali-silica reaction products of fly ash of lithium salt bearing mortar under long-term accelerated curing. Cement and Concrete Research, 34, 1179-1183. https://doi.org/10.1016/j.cemconres.2003.12.007
- Shehata, M. H., & Thomas, M. D. A. (2000). The effect of fly ash composition on the expansion of concrete due to alkali-silica reaction. Cement and Concrete Research, 30, 1063-1072. https://doi.org/10.1016/S0008-8846(00)00283-0
- Stanton, T. E. (1940). Expansion of concrete through reaction between cement and aggregate. Proceedings of the American Society of Civil Engineers, 66(10), 1781-1811.
- Stark, D., Morgan, B., Okamoto, P., & Diamond, S. (1993). Eliminating or minimizing alkali-silica reactivity. Strategic Highway Research Program, SHRP-P-343, Washington, DC.
- Taha, B., & Nounu, G. (2008). Using lithium nitrate and pozzolanic glass powder in concrete as ASR suppressors. Cement & Concrete Composites, 30, 497-505. https://doi.org/10.1016/j.cemconcomp.2007.08.010
- Touma, E. W., Fowler, D. W., & Carrasquillo, R. L. (2001). Alkali-silica reaction in Portland cement concrete: Testing methods alternatives. Research report ICAR-301-1f. International Center for Aggregates Research (ICAR).
- Tremblay, C., Berube, M. A., Fournier, B., Thomas, M. D. A., & Folliard, K. J. (2007). Effectiveness of lithium-based products in concrete made with Canadian natural aggregates susceptible to alkali-silica reactivity. ACI Materials Journal, 104(2), 195-205.
피인용 문헌
- Role of solution concentration, cement alkali and test duration on expansion of accelerated mortar bar test (AMBT) vol.49, pp.5, 2014, https://doi.org/10.1617/s11527-015-0626-2
- Micro and Nano Engineered High Volume Ultrafine Fly Ash Cement Composite with and without Additives vol.10, pp.1, 2014, https://doi.org/10.1007/s40069-015-0122-7
- Parametric study and alkali-silica reactivity-induced expansion model of ASTM C 1260 vol.72, pp.20, 2014, https://doi.org/10.1680/jmacr.18.00544