Acknowledgement
Supported by : National Science Foundation
References
- Altan, E., & Erdogan, S. T. (2012). Alkali activation of a slag at ambient and elevated temperatures. Cement & Concrete Composites, 34, 131-139. https://doi.org/10.1016/j.cemconcomp.2011.08.003
- Atahan, H. N., Oktar, O. N., & Tasdemir, M. A. (2009). Effects of water-cement ratio and curing time on the critical pore width of hardened cement paste. Construction and Building Materials, 23, 1196-1200. https://doi.org/10.1016/j.conbuildmat.2008.08.011
- Bernal, S. A., Mejia de Gutierrez, R., Pedraza, A. L., Provis, J. L., Rodriguez, E. D., & Delvasto, S. (2011). Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research, 41, 1-8. https://doi.org/10.1016/j.cemconres.2010.08.017
- Bernal, S. A., Mejia de Gutierrez, R., & Provis, J. L. (2012). Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Construction and Building Materials, 33, 99-108. https://doi.org/10.1016/j.conbuildmat.2012.01.017
- Chang, J. J. (2003). A study on the setting characteristics of sodium silicate-activated slag pastes. Cement and Concrete Research, 33, 1005-1011. https://doi.org/10.1016/S0008-8846(02)01096-7
- Chithiraputhiran, S. (2012). Kinetics of alkali activation of slag and fly ash-slag systems. M.S Thesis, Arizona State University, 2012, Tempe, AZ.
- Chithiraputhiran, S., & Neithalath, N. (2013). Isothermal reaction kinetics and alkali activation of slag, fly ash, and their blends. Construction and Building Materials, 45, 233-242. https://doi.org/10.1016/j.conbuildmat.2013.03.061
- Diamond, S. (2000). Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cement and Concrete Research, 30, 1517-1525. https://doi.org/10.1016/S0008-8846(00)00370-7
- Duxson, P., Fernandez-Jimenez, A., Provis, J., Lukey, G., Palomo, A., & van Deventer, J. S. J. (2007). Geopolymer technology: The current state of the art. Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
- Fernandez-Jimenez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research, 29, 1313-1321. https://doi.org/10.1016/S0008-8846(99)00154-4
- Hajimohammadi, A., Provis, J. L., & van Deventer, J. S. J. (2011). The effect of silica availability on the mechanism of geopolymerisation. Cement and Concrete Research, 41, 210-216. https://doi.org/10.1016/j.cemconres.2011.02.001
- Jain, J., & Neithalath, N. (2011). Electrical impedance analysis based quantification of microstructural changes in concretes due to non-steady state chloride migration. Materials Chemistry and Physics, 129, 569-579. https://doi.org/10.1016/j.matchemphys.2011.04.057
- Kumar, A., Oey, T., Falla, G. P., Henkenseifken, R., Neithalath, N., & Sant, G. (2013). A comparison of intergrinding and blending limestone on reaction and strength evolution in cementitious materials. Construction and Building Materials, 43, 428-435. https://doi.org/10.1016/j.conbuildmat.2013.02.032
- Mehta, P. K. (2007). Sustainability of the concrete industry-Critical issues, ACI Strategic Development Committee's. Concrete Summit on Sustainable Development, March 29, Washington, DC.
- Moro, F., & Bohni, H. (2002). Ink-bottle effect in mercury intrusion porosimetry of cement-based materials. Journal of Colloid and Interface Science, 246, 135-149. https://doi.org/10.1006/jcis.2001.7962
- Neithalath, N., & Jain, J. (2010). Relating rapid chloride transport parameters of concretes to microstructural features extracted from electrical impedance. Cement and Concrete Research, 40, 1041-1051. https://doi.org/10.1016/j.cemconres.2010.02.016
- Neithalath, N., Persun, J., & Hossain, A. (2009). Hydration in high-performance cementitious systems containing vitreous calcium aluminosilicate or silica fume. Cement and Concrete Research, 39, 473-481. https://doi.org/10.1016/j.cemconres.2009.03.006
- Neithalath, N., & Ravikumar, D. (2013). Evaluating the use of accelerated test methods for chloride transport in alkali activated slag concretes using electrical impedance and associated models. ASTM STP 1566.
- NT Build 492 (1999). Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steadystate migration experiments. NordtestProj, Espoo.
- Pacheco-Torgal, F., Abdollahnejad, Z., Camoes, A. F., Jamshidi M., & Ding, Y. (2012). Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue? Construction and Building Materials, 30, 400-405. https://doi.org/10.1016/j.conbuildmat.2011.12.017
- Pacheco-Torgal, F., Castro-Gomes, J., & Jalali, S. (2008). Alkali-activated binders: A review: Part 1. Historical background, terminology, reaction mechanisms and hydration products. Construction and Building Materials, 22, 1305-1314. https://doi.org/10.1016/j.conbuildmat.2007.10.015
- Palomo, A., Grutzeck, M., & Blanco, M. (1999). Alkali-activated fly ashes: A cement for the future. Cement and Concrete Research, 29, 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
- Provis, J. L., & Van Deventer, J. S. J. (2009). Geopolymers: Structure, processing, properties and industrial applications. Cambridge, UK: Woodhead.
- Puertas, F., Fernandez-Jimenez, A., & Blanco-Varela, M. T. (2004). Pore solution in alkali-activated slag cement pastes. Relation to the composition and structure of calcium silicate hydrate. Cement and Concrete Research, 34, 195-206. https://doi.org/10.1016/S0008-8846(03)00250-3
- Ravikumar, D., & Neithalath, N. (2012a). Reaction kinetics in sodium silicate powder and liquid activated slag evaluated using isothermal calorimetry. Thermochimica Acta, 546, 32-43. https://doi.org/10.1016/j.tca.2012.07.010
- Ravikumar, D., & Neithalath, N. (2012b). Effects of activator characteristics on the reaction product formation in slag binders activated using alkali silicate powder and NaOH. Cement & Concrete Composites, 34, 809-818. https://doi.org/10.1016/j.cemconcomp.2012.03.006
- Ravikumar, D., & Neithalath, N. (2013). Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cement and Concrete Research, 47, 31-42. https://doi.org/10.1016/j.cemconres.2013.01.007
- Ravikumar, D., Peethamparan, S., & Neithalath, N. (2010). Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder. Cement & Concrete Composites, 32, 399-410. https://doi.org/10.1016/j.cemconcomp.2010.03.007
- Schwarz, N., & Neithalath, N. (2010). Chloride transport in glass powder and fly ash modified concretes-Influence of test methods on microstructure. Cement & Concrete Composites, 32, 148-156. https://doi.org/10.1016/j.cemconcomp.2009.11.010
- Shi, C., Krivenko, P. V., & Roy, D. (2006). Alkali-activated cements and concretes. London, UK: Spon Press.
- Song, S., Sohn, D., Jennings, H. M., & Mason, T. O. (2000). Hydration of alkali-activated ground granulated blast furnace slag. Journal of Material Science, 35, 249-257. https://doi.org/10.1023/A:1004742027117
- Vance, K., Aguayo, M., Oey, T., Sant, G., & Neithalath, N. (2013). Hydration and strength development in ternary portland cement blends containing limestone and fly ash or metakaolin. Cement & Concrete Composites, 39, 93-103. https://doi.org/10.1016/j.cemconcomp.2013.03.028
- Wang, S., Scrivener, K. L., & Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24, 1033-1043. https://doi.org/10.1016/0008-8846(94)90026-4
- Yip, C. K., Lukey, G. C., & van Deventer, J. S. J. (2005). The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cement and Concrete Research, 35, 1688-1697. https://doi.org/10.1016/j.cemconres.2004.10.042
Cited by
- Image Analysis and DC Conductivity Measurement for the Evaluation of Carbon Nanotube Distribution in Cement Matrix vol.9, pp.4, 2014, https://doi.org/10.1007/s40069-015-0121-8
- Quantitative 2D Restrained Shrinkage Cracking of Cement Paste with Wollastonite Microfibers vol.28, pp.9, 2014, https://doi.org/10.1061/(asce)mt.1943-5533.0001592
- An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar vol.6, pp.4, 2014, https://doi.org/10.4236/ojcm.2016.64013
- Durability of Bricks Coated with Red mud Based Geopolymer Paste vol.149, pp.None, 2014, https://doi.org/10.1088/1757-899x/149/1/012070
- Tensile Properties of Hybrid Fiber-Reinforced Reactive Powder Concrete After Exposure to Elevated Temperatures vol.10, pp.1, 2014, https://doi.org/10.1007/s40069-016-0125-z
- Early strength and durability of metakaolin-based geopolymer concrete vol.69, pp.1, 2014, https://doi.org/10.1680/jmacr.16.00118
- Durability of alkali-activated materials in aggressive environments: A review on recent studies vol.152, pp.None, 2017, https://doi.org/10.1016/j.conbuildmat.2017.07.027
- Acid and Sulfate Resistance of Alkali-Activated Ternary Blended Composite Binder vol.30, pp.2, 2018, https://doi.org/10.1061/(asce)mt.1943-5533.0002131
- Influence of Pseudowollastonite on the Performance of Low Calcium Amorphous Hydraulic Binders vol.12, pp.20, 2014, https://doi.org/10.3390/ma12203457
- Activating effect of potassium silicate solution in low portland cement binder vol.319, pp.None, 2014, https://doi.org/10.1016/j.conbuildmat.2021.126091