DOI QR코드

DOI QR Code

Recent Advances in Toxoplasma gondii Immunotherapeutics

  • Lim, Sherene Swee-Yin (Genetics and Molecular Biology Department, Institute of Biological Sciences, Faculty of Science, University of Malaya) ;
  • Othman, Rofina Yasmin (Genetics and Molecular Biology Department, Institute of Biological Sciences, Faculty of Science, University of Malaya)
  • Received : 2014.04.03
  • Accepted : 2014.08.22
  • Published : 2014.12.31

Abstract

Toxoplasmosis is an opportunistic infection caused by the protozoan parasite Toxoplasma gondii. T. gondii is widespread globally and causes severe diseases in individuals with impaired immune defences as well as congenitally infected infants. The high prevalence rate in some parts of the world such as South America and Africa, coupled with the current drug treatments that trigger hypersensitivity reactions, makes the development of immunotherapeutics intervention a highly important research priority. Immunotherapeutics strategies could either be a vaccine which would confer a pre-emptive immunity to infection, or passive immunization in cases of disease recrudescence or recurrent clinical diseases. As the severity of clinical manifestations is often greater in developing nations, the development of well-tolerated and safe immunotherapeutics becomes not only a scientific pursuit, but a humanitarian enterprise. In the last few years, much progress has been made in vaccine research with new antigens, novel adjuvants, and innovative vaccine delivery such as nanoparticles and antigen encapsulations. A literature search over the past 5 years showed that most experimental studies were focused on DNA vaccination at 52%, followed by protein vaccination which formed 36% of the studies, live attenuated vaccinations at 9%, and heterologous vaccination at 3%; while there were few on passive immunization. Recent progress in studies on vaccination, passive immunization, as well as insights gained from these immunotherapeutics is highlighted in this review.

Keywords

References

  1. Chowdhury M. Toxoplasmosis: a review. J Med 1986; 17: 373-396.
  2. Brindle R, Holliman R, Gilks C, Waiyaki P. Toxoplasma antibodies in HIV-positive patients from Nairobi. Trans R Soc Trop Med Hyg 1991; 85: 750-751. https://doi.org/10.1016/0035-9203(91)90443-3
  3. Mui EJ, Schiehser GA, Milhous WK, Hsu H, Roberts CW, Kirisits M, Muench S, Rice D, Dubey JP, Fowble JW, Rathod PK, Queener SF, Liu SR, Jacobus DP, McLeod R. Novel triazine JPC-2067-B inhibits Toxoplasma gondii in vitro and in vivo. PLoS Negl Trop Dis 2008; 2: e190. https://doi.org/10.1371/journal.pntd.0000190
  4. Khan A, Jordan C, Muccioli C, Vallochi AL, Rizzo LV, Belfort R Jr, Vitor RWA, Silveira C, Sibley LD. Genetic Divergence of Toxoplasma gondii Strains Associated with Ocular Toxoplasmosis, Brazil. Emerg Infect Dis 2006; 12: 942-949. https://doi.org/10.3201/eid1206.060025
  5. Bottos J, Miller RH, Belfort RN, Macedo AC, UNIFESP Toxoplasmosis Group, Belfort R Jr, Grigg ME. Bilateral retinochoroiditis caused by an atypical strain of Toxoplasma gondii. Br J Ophthalmol 2009; 93: 1546-1550. https://doi.org/10.1136/bjo.2009.162412
  6. Garcia J, Innes EA, Katzer F. Current progress toward vaccines against Toxoplasma gondii. Vaccine Devel Ther 2014; 4: 23-37.
  7. Kur J, Holec-Gasior L, Hiszczynska-Sawicka E. Current status of toxoplasmosis vaccine development. Expert Rev Vaccines 2009; 8: 791-808. https://doi.org/10.1586/erv.09.27
  8. Tan TG, Mui E, Cong H, Witola W, Montpetit A, Muench SP, Sidney J, Alexander J, Sette A, Grigg M, Maewal A, McLeod R. Identification of T. gondii epitopes, adjuvants, and host genetic factors that influence protection of mice and humans. Vaccine 2010; 28: 3977-3989. https://doi.org/10.1016/j.vaccine.2010.03.028
  9. Gazzinelli RT, Hakim FT, Hieny S, Shearer GM, Sher A. Synergistic role of $CD4^+$ and $CD8^+$ T lymphocytes in IFN-gamma production and protective immunity induced by an attenuated Toxoplasma gondii vaccine. J Immunol 1991; 146: 286-292.
  10. Brown CR, McLeod R. Class I MHC genes and $CD8^+$ T cells determine cyst number in Toxoplasma gondii infection. J Immunol 1990; 145: 3438-3441.
  11. Jongert E, Roberts CW, Gargano N, Forster-Waldl E, Petersen E. Vaccines against Toxoplasma gondii: challenges and opportunities. Mem Inst Oswaldo Cruz 2009; 104: 252-266.
  12. Debard N, Buzoni-Gatel D, Bout D. Intranasal immunization with SAG1 protein of Toxoplasma gondii in association with cholera toxin dramatically reduces development of cerebral cysts after oral infection. Infect Immun 1996; 64: 2158-2166.
  13. Khan IA, Ely KH, Kasper LH. A purified parasite antigen (p30) mediates $CD8^+$ T cell immunity against fatal Toxoplasma gondii infection in mice. J Immunol 1991; 147: 3501-3506.
  14. Bonenfant C, Dimier-Poisson I, Velge-Roussel F, Buzoni-Gatel D, Del Giudice G, Rappuoli R, Bout D. Intranasal immunization with SAG1 and nontoxic mutant heat-labile enterotoxins protects mice against Toxoplasma gondii. Infect Immun 2001; 69: 1605-1612. https://doi.org/10.1128/IAI.69.3.1605-1612.2001
  15. Qu D, Han J, Du A. Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re. Exp Parasitol 2013; 135: 234-239. https://doi.org/10.1016/j.exppara.2013.07.013
  16. Letscher-Bru V, Pfaff AW, Abou-Bacar A, Filisetti D, Antoni E, Villard O, Klein JP, Candolfi E. Vaccination with Toxoplasma gondii SAG-1 protein is protective against congenital toxoplasmosis in BALB/c mice but not in CBA/J mice. Infect Immun 2003; 71: 6615-6619. https://doi.org/10.1128/IAI.71.11.6615-6619.2003
  17. Chuang SC, Ko JC, Chen CP, Du JT, Yang CD. Induction of long-lasting protective immunity against Toxoplasma gondii in BALB/c mice by recombinant surface antigen 1 protein encapsulated in poly (lactide-co-glycolide) microparticles. Parasit Vectors 2013; 6: 34. https://doi.org/10.1186/1756-3305-6-34
  18. Chuang SC, Ko JC, Chen CP, Du JT, Yang CD. Encapsulation of chimeric protein rSAG1/2 into poly (lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Exp Parasitol 2013; 134: 430-437. https://doi.org/10.1016/j.exppara.2013.04.002
  19. Yin LT, Hao HX, Wang HL, Zhang JH, Meng XL, Yin GR. Intranasal immunisation with recombinant Toxoplasma gondii actin partly protects mice against Toxoplasmosis. PLoS ONE 2013; 8: e82765. https://doi.org/10.1371/journal.pone.0082765
  20. Wang HL, Pang M, Yin LT, Zhang JH, Meng XL, Yu BF, Guo R, Bai JZ, Zheng GP, Yin GR. Intranasal immunisation of the recombinant Toxoplasma gondii receptor for activated C kinase 1 partly protects mice against T. gondii infection. Acta Trop 2014; 137: 58-66. https://doi.org/10.1016/j.actatropica.2014.05.001
  21. Nakaar V, Ngo HM, Aaronson EP, Coppens I, Stedman TT, Joiner KA. Pleiotropic effect due to targeted depletion of secretory rhoptry protein ROP2 in Toxoplasma gondii. J Cell Sci 2003; 116: 2311-2320. https://doi.org/10.1242/jcs.00382
  22. Nam HW. GRA Proteins of Toxoplasma gondii: maintenance of host-parasite interactions across the parasitophorous vacuolar membrane. Korean J Parasitol 2009; 47 (suppl): S29-S37. https://doi.org/10.3347/kjp.2009.47.S.S29
  23. Martin V, Supanitsky A, Echeverria PC, Litwin S, Tanos T, Roodt ARD, Guarnera EA, Angel SO. Recombinant GRA4 or ROP2 protein combined with alum or the gra4 gene provides partial protection in chronic murine models of toxoplasmosis. Clin Diagn Lab Immunol 2004; 11: 704-710.
  24. Dziadek B, Gatkowska J, Brzostek A, Dziadek J, Dzitko K, Grzybowski M, Dlugonska H. Evaluation of three recombinant multi-antigenic vaccines composed of surface and secretory antigens of Toxoplasma gondii in murine models of experimental toxoplasmosis. Vaccine 2011; 29: 821-830. https://doi.org/10.1016/j.vaccine.2010.11.002
  25. Dziadek B, Gatkowska J, Grzybowski M, Dziadek J, Dzitko K, Dlugonska H. Toxoplasma gondii: the vaccine potential of three trivalent antigen-cocktails composed of recombinant ROP2, ROP4, GRA4 and SAG1 proteins against chronic toxoplasmosis in BALB/c mice. Exp Parasitol 2012; 131: 133-138. https://doi.org/10.1016/j.exppara.2012.02.026
  26. El Bissati K, Zhou Y, Dasgupta D, Cobb D, Dubey JP, Burkhard P, Lanar DE, McLeod R. Effectiveness of a novel immunogenic nanoparticle platform for Toxoplasma peptide vaccine in HLA transgenic mice. Vaccine 2014; 32: 3243-3248. https://doi.org/10.1016/j.vaccine.2014.03.092
  27. del L. Yacono M, Farran I, Becher ML, Sander V, Sanchez VR, Martin V, Veramendi J, Clemente M. A chloroplast-derived Toxoplasma gondii GRA4 antigen used as an oral vaccine protects against toxoplasmosis in mice. Plant Biotechnol J 2012; 10: 1136-1144. https://doi.org/10.1111/pbi.12001
  28. Laguia-Becher M, Martin V, Kraemer M, Corigliano M, Yacono ML, Goldman A, Clemente M. Effect of codon optimization and subcellular targeting on Toxoplasma gondii antigen SAG1 expression in tobacco leaves to use in subcutaneous and oral immunization in mice. BMC Biotechnol 2010; 10: 52. https://doi.org/10.1186/1472-6750-10-52
  29. Zheng B, Lu S, Tong Q, Kong Q, Lou D. The virulence-related rhoptry protein 5 (ROP5) of Toxoplasmag gondii is a novel vaccine candidate against toxoplasmosis in mice. Vaccine 2013; 31: 4578-4584. https://doi.org/10.1016/j.vaccine.2013.07.058
  30. Sanchez VR, Pitkowski MN, Fernandez Cuppari AV, Rodriguez FM, Fenoy IM, Frank FM, Goldman A, Corral RS, Martin V. Combination of CpG-oligodeoxynucleotides with recombinant ROP2 or GRA4 proteins induces protective immunity against Toxoplasma gondii infection. Exp Parasitol 2011; 128: 448-453. https://doi.org/10.1016/j.exppara.2011.04.004
  31. Wang Y, Wang M, Wang G, Pang A, Fu B, Yin H, Zhang D. Increased survival time in mice vaccinated with a branched lysine multiple antigenic peptide containing B- and T-cell epitopes from T. gondii antigens. Vaccine 2011; 29: 8619-8623. https://doi.org/10.1016/j.vaccine.2011.09.016
  32. Wang HL, Li YQ, Yin LT, Meng XL, Guo M, Zhang JH, Liu HL, Liu JJ, Yin GR. Toxoplasma gondii Protein Disulfide Isomerase (TgPDI) is a novel vaccine candidate against toxoplasmosis. PLoS ONE 2013; 8: e70884. https://doi.org/10.1371/journal.pone.0070884
  33. Zhang NZ, Huang SY, Xu Y, Chen J, Wang JL, Tian WP, Zhu XQ. Evaluation of immune responses in mice after DNA immunization with putative Toxoplasma gondii Calcium-Dependent Protein Kinase 5 (TgCDPK5). Clin Vaccine Immunol. 2014; 21: 924-929. https://doi.org/10.1128/CVI.00059-14
  34. Yuan ZG, Ren D, Zhou DH, Zhang XX, Petersen E, Li XZ, Zhou Y, Yang GL, Zhu XQ. Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine 2013; 31: 3135-3139. https://doi.org/10.1016/j.vaccine.2013.05.040
  35. Chen J, Zhou DH, Li ZY, Petersen E, Huang SY, Song HQ, Zhu XQ. Toxoplasma gondii: protective immunity induced by rhoptry protein 9 (TgROP9) against acute toxoplasmosis. Exp Parasitol 2014; 139: 42-48. https://doi.org/10.1016/j.exppara.2014.02.016
  36. Chen J, Huang SY, Li ZY, Yuan ZG, Zhou DH, Petersen E, Zhang NZ, Zhu XQ. Protective immunity induced by a DNA vaccine expressing eIF4A of Toxoplasma gondii against acute toxoplasmosis in mice. Vaccine 2013; 31: 1734-1739. https://doi.org/10.1016/j.vaccine.2013.01.027
  37. Liu Q, Singla LD, Zhou H. Vaccines against Toxoplasma gondii: status, challenges and future directions. Hum Vaccines Immunother 2012; 8: 1305-1308. https://doi.org/10.4161/hv.21006
  38. Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 2012; 11: 189-209. https://doi.org/10.1586/erv.11.188
  39. Beghetto E, Nielsen HV, Porto PD, Buffolano W, Guglietta S, Felici F, Petersen E, Gargano N. A combination of antigenic regions of Toxoplasma gondii microneme proteins induces protective immunity against oral infection with parasite cysts. J Infect Dis 2005; 191: 637-645. https://doi.org/10.1086/427660
  40. Henriquez FL, Woods S, Cong H, McLeod R, Roberts CW. Immunogenetics of Toxoplasma gondii informs vaccine design. Trends Parasitol 2010; 26: 550-555. https://doi.org/10.1016/j.pt.2010.06.004
  41. Kessler H, Herm-Gotz A, Hegge S, Rauch M, Soldati-Favre D, Frischknecht F, Meissner M. Microneme protein 8-a new essential invasion factor in Toxoplasma gondii. J Cell Sci 2008; 121: 947-956. https://doi.org/10.1242/jcs.022350
  42. Liu MM, Yuan ZG, Peng GH, Zhou DH, He XH, Yan C, Yin CC, He Y, Lin RQ, Song HQ, Zhu XQ. Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitol Res 2010; 106: 1079-1084. https://doi.org/10.1007/s00436-010-1742-0
  43. Li ZY, Chen J, Petersen E, Zhou DH, Huang SY, Song HQ, Zhu XQ. Synergy of mIL-21 and mIL-15 in enhancing DNA vaccine efficacy against acute and chronic Toxoplasma gondii infection in mice. Vaccine 2014; 32: 3058-3065. https://doi.org/10.1016/j.vaccine.2014.03.042
  44. Nielsen HV, Lauemoller SL, Christiansen L, Buus S, Fomsgaard A, Petersen E. Complete protection against lethal Toxoplasma gondii infection in mice immunized with a plasmid encoding the SAG1 gene. Infect Immun 1999; 67: 6358-6363.
  45. Petersen E, Nielsen HV, Christiansen L, Spenter J. Immunization with E. coli produced recombinant T. gondii SAG1 with alum as adjuvant protect mice against lethal infection with Toxoplasma gondii. Vaccine 1998; 16: 1283-1289. https://doi.org/10.1016/S0264-410X(98)00039-5
  46. Cong H, Zhang M, Xin Q, Wang Z, Li Y, Zhao Q, Zhou H, He S. Compound DNA vaccine encoding SAG1/SAG3 with A2/B subunit of cholera toxin as a genetic adjuvant protects BALB/c mice against Toxoplasma gondii. Parasit Vectors 2013; 6: 63. https://doi.org/10.1186/1756-3305-6-63
  47. Meng M, He S, Zhao G, Bai Y, Zhou H, Cong H, Lu G, Zhao Q, Zhu XQ. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice. Parasite Vector 2012; 5: 273. https://doi.org/10.1186/1756-3305-5-273
  48. Zhou H, Min J, Zhao Q, Gu Q, Cong H, Li Y, He S. Protective immune response against Toxoplasma gondii elicited by a recombinant DNA vaccine with a novel genetic adjuvant. Vaccine 2012; 30: 1800-1806. https://doi.org/10.1016/j.vaccine.2012.01.004
  49. Liu S, Shi L, Cheng YB, Fan GX, Ren HX, Yuan YK. Evaluation of protective effect of multi-epitope DNA vaccine encoding six antigen segments of Toxoplasma gondii in mice. Parasitol Res 2009; 105: 267-274. https://doi.org/10.1007/s00436-009-1393-1
  50. Fachado A, Rodriguez A, Angel SO, Pinto DC, Vila I, Acosta A, Amendoeira RR, Lannes-Vieira J. Protective effect of a naked DNA vaccine cocktail against lethal toxoplasmosis in mice. Vaccine 2003; 21: 1327-1335. https://doi.org/10.1016/S0264-410X(02)00692-8
  51. Ivory C, Chadee K. DNA vaccines: designing strategies against parasitic infections. Genet Vaccines Ther 2004; 2: 17. https://doi.org/10.1186/1479-0556-2-17
  52. Parthasarathy S, Fong MY, Ramaswamy K, Lau YL. Protective immune response in BALB/c mice induced by DNA vaccine of the ROP8 gene of Toxoplasma gondii. Am J Trop Med Hyg 2013; 88: 883-887. https://doi.org/10.4269/ajtmh.12-0727
  53. Gong P, Huang X, Yu Q, Li Y, Huang J, Li J, Yang J, Li H, Zhang G, Ren W, Zhang X. The protective effect of a DNA vaccine encoding the Toxoplasma gondii cyclophilin gene in BALB/c mice. Parasite Immunol 2013; 35: 140-146. https://doi.org/10.1111/pim.12024
  54. Sun XM, Zou J, AA ES, Yan WC, Liu XY, Suo X, Wang H, Chen QJ. DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partial protection against toxoplasmosis in BALB/c mice. Parasit Vectors 2011; 4: 213. https://doi.org/10.1186/1756-3305-4-213
  55. Wang PY, Yuan ZG, Petersen E, Li J, Zhang XX, Li XZ, Li HX, Lv ZC, Cheng T, Ren D, Yang GL, Lin RQ, Zhu XQ. Protective efficacy of a Toxoplasma gondii Rhoptry Protein 13 plasmid DNA vaccine in mice. Clin Vaccine Immunol 2012; 19: 1916-1920. https://doi.org/10.1128/CVI.00397-12
  56. Yuan ZG, Zhang XX, He XH, Petersen E, Zhou DH, He Y, Lin RQ, Li XZ, Chen XL, Shi XR, Zhong XL, Zhang B, Zhu XQ. Protective immunity induced by Toxoplasma gondii rhoptry protein 16 against toxoplasmosis in mice. Clin Vaccine Immunol 2011; 18: 119-124. https://doi.org/10.1128/CVI.00312-10
  57. Yuan ZG, Zhang XX, Lin RQ, Petersen E, He S, Yu M, He XH, Zhou DH, He Y, Li HX, Liao M, Zhu XQ. Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine 2011; 29: 6614-6619. https://doi.org/10.1016/j.vaccine.2011.06.110
  58. Li J, Han Q, Gong P, Yang T, Ren B, Li S, Zhang X. Toxoplasma gondii rhomboid protein 1 (TgROM1) is a potential vaccine candidate against toxoplasmosis. Vet Parasitol 2012; 184: 154-160. https://doi.org/10.1016/j.vetpar.2011.08.014
  59. Yan HK, Yuan ZG, Petersen E, Zhang XX, Zhou DH, Liu Q, He Y, Lin RQ, Xu MJ, Chen XL, Zhong XL, Zhu XQ. Toxoplasma gondii: protective immunity against experimental toxoplasmosis induced by a DNA vaccine encoding the perforin-like protein 1. Exp Parasitol 2011; 128: 38-43. https://doi.org/10.1016/j.exppara.2011.02.005
  60. Zhang NZ, Huang SY, Zhou DH, Chen J, Xu Y, Tian WP, Lu J, Zhu XQ. Protective immunity against Toxoplasma gondii induced by DNA immunization with the gene encoding a novel vaccine candidate: calcium-dependent protein kinase 3. BMC Infect Dis 2013; 13: 512. https://doi.org/10.1186/1471-2334-13-512
  61. Zhang M, Zhao L, Song J, Li Y, Zhao Q, He S, Cong H. DNA vaccine encoding the Toxoplasma gondii bradyzoite-specific surface antigens SAG2CDX protect BALB/c mice against type II parasite infection. Vaccine 2013; 31: 4536-4540. https://doi.org/10.1016/j.vaccine.2013.07.065
  62. Yu L, Yamagishi J, Zhang S, Jin C, Aboge GO, Zhang H, Zhang G, Tanaka T, Fujisaki K, Nishikawa Y, Xuan X. Protective effect of a prime-boost strategy with plasmid DNA followed by recombinant adenovirus expressing TgAMA1 as vaccines against Toxoplasma gondii infection in mice. Parasitol Int 2012; 61: 481-486. https://doi.org/10.1016/j.parint.2012.04.001
  63. Meng M, Zhou A, Lu G, Wang L, Zhao G, Han Y, Zhou H, Cong H, Zhao Q, Zhu XQ, He S. DNA prime and peptide boost immunization protocol encoding the Toxoplasma gondii GRA4 induces strong protective immunity in BALB/c mice. BMC Infect Dis 2013; 13: 494. https://doi.org/10.1186/1471-2334-13-494
  64. Zhao H, Huang FY, Guo JL, Tan GH. Evaluation on the immune response induced by DNA vaccine encoding MIC8 co-immunized with IL-12 genetic adjuvant against Toxoplasma gondii infection. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi (Chinese J Parasitol Parasit Dis) 2013; 31: 284-289.
  65. Chen J, Huang SY, Zhou DH, Li ZY, Petersen E, Song HQ, Zhu XQ. DNA immunization with eukaryotic initiation factor-$2{\alpha}$ of Toxoplasma gondii induces protective immunity against acute and chronic toxoplasmosis in mice. Vaccine 2013; 31: 6225-6231. https://doi.org/10.1016/j.vaccine.2013.10.034
  66. Cui X, Lei T, Yang D, Hao P, Li B, Liu Q. Toxoplasma gondii immune mapped protein-1 (TgIMP1) is a novel vaccine candidate against toxoplasmosis. Vaccine 2012; 30: 2282-2287. https://doi.org/10.1016/j.vaccine.2012.01.073
  67. Zhang G, Huong VT, Battur B, Zhou J, Zhang H, Liao M, Kawase O, Lee EG, Dautu G, Igarashi M, Nishikawa Y, Xuan X. A heterologous prime-boost vaccination regime using DNA and a vaccinia virus, both expressing GRA4, induced protective immunity against Toxoplasma gondii infection in mice. Parasitology 2007; 134: 1339-1346. https://doi.org/10.1017/S0031182007002892
  68. Taylor DN, Tacket CO, Losonsky G, Castro O, Gutierrez J, Meza R, Nataro JP, Kaper JB, Wasserman SS, Edelman R, Levine MM, Cryz SJ. Evaluation of a bivalent (CVD 103-HgR/CVD 111) live oral cholera vaccine in adult volunteers from the United States and Peru. Infect Immun 1997; 65: 3852-3856.
  69. Virnik K, Hockenbury M, Ni Y, Beren J, Pavlakis GN, Felber BK, Berkower I. Live attenuated rubella vectors expressing SIV and HIV vaccine antigens replicate and elicit durable immune responses in rhesus macaques. Retrovirology 2013; 10: 99. https://doi.org/10.1186/1742-4690-10-99
  70. Toussaint B, Chauchet X, Wang Y, Polack B, Le Gouellec A. Live-attenuated bacteria as a cancer vaccine vector. Expert Rev Vaccines 2013; 12: 1139-1154. https://doi.org/10.1586/14760584.2013.836914
  71. Detmer A, Glenting J. Live bacterial vaccines-a review and identification of potential hazards. Microb Cell Fact 2006; 5: 23. https://doi.org/10.1186/1475-2859-5-23
  72. Mendes EA, Fonseca FG, Caserio BM, Colina JP, Gazzinelli RT, Caetano BC. Recombinant vaccines against T. gondii: comparison between homologous and heterologous vaccination protocols using two viral vectors expressing SAG1. PLoS One 2013; 8: e63201. https://doi.org/10.1371/journal.pone.0063201
  73. Cong H, Gu QM, Jiang Y, He SY, Zhou HY, Yang TT, Li Y, Zhao QL. Oral immunization with a live recombinant attenuated Salmonella typhimurium protects mice against Toxoplasma gondii. Parasite Immunol 2005; 27: 29-35. https://doi.org/10.1111/j.1365-3024.2005.00738.x
  74. Liu Q, Gao S, Jiang L, Shang L, Men J, Wang Z, Zhai Y, Xia Z, Hu R, Zhang X, Zhu XQ. A recombinant pseudorabies virus expressing TgSAG1 protects against challenge with the virulent Toxoplasma gondii RH strain and pseudorabies in BALB/c mice. Microbes Infect 2008; 10: 1355-1362. https://doi.org/10.1016/j.micinf.2008.08.002
  75. Nie H, Fang R, Xiong BQ, Wang LX, Hu M, Zhou YQ, Zhao JL. Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Vet Parasitol 2011; 181: 215-221. https://doi.org/10.1016/j.vetpar.2011.04.039
  76. Mack DG, Johnson JJ, Roberts F, Roberts CW, Estes RG, David C, Grumet CF, McLeod R. HLA-class II genes modify outcome of Toxoplasma gondii infection. Int J Parasitol 1999; 29: 1351-1358. https://doi.org/10.1016/S0020-7519(99)00152-6
  77. Suzuki Y, Wong SY, Grumet FC, Fessel J, Montoya JG, Zolopa AR, Portmore A, Schumacher-Perdreau F, Schrappe M, Koppen S, Ruf B, Brown BW, Remington JS. Evidence for genetic regulation of susceptibility to toxoplasmic encephalitis in AIDS patients. J Infect Dis 1996; 173: 265-268. https://doi.org/10.1093/infdis/173.1.265
  78. Dubey JP, Ferreira LR, Martins J, McLeod R. Oral oocyst-induced mouse model of toxoplasmosis: effect of infection with Toxoplasma gondii strains of different genotypes, dose, and mouse strains (transgenic, out-bred, in-bred) on pathogenesis and mortality. Parasitology 2012; 139: 1-13.
  79. Bruna-Romero O, de Oliveira DM, de Andrade-Neto VF. Toxoplasmosis: Advances and Vaccine Perspectives. In Rodriguez-Morales AJ, eds., Current Topics in Tropical Medicine. Rijeka, Croatia. InTech. 2012.
  80. Yarovinsky F. Innate immunity to Toxoplasma gondii infection. Nat Rev Immunol 2014; 14: 109-121. https://doi.org/10.1038/nri3598
  81. Beghetto E, Spadoni A, Buffolano W, Del Pezzo M, Minenkova O, Pavoni E, Pucci A, Cortese R, Felici F, Gargano N. Molecular dissection of the human B-cell response against Toxoplasma gondii infection by lambda display of cDNA libraries. Int J Parasitol 2003; 33: 163-173. https://doi.org/10.1016/S0020-7519(02)00256-4
  82. Bhadra R, Gigley JP, Khan IA. The CD8 T-cell road to immunotherapy of toxoplasmosis. Immunotherapy 2011; 3: 789-801. https://doi.org/10.2217/imt.11.68
  83. Bhadra R, Cobb DA, Khan IA. Donor $CD8^+$ T cells prevent Toxoplasma gondii de-encystation but fail to rescue the exhausted endogenous $CD8^+$ T cell population. Infect Immun 2013; 81: 3414-3425. https://doi.org/10.1128/IAI.00784-12
  84. Kang H, Remington JS, Suzuki Y. Decreased resistance of B cell-deficient mice to infection with Toxoplasma gondii despite unimpaired expression of IFN-${\gamma}$, TNF-${\alpha}$, and inducible nitric oxide synthase. J Immunol 2000; 164: 2629-2634. https://doi.org/10.4049/jimmunol.164.5.2629
  85. Sayles PC, Gibson GW, Johnson LL. B cells are essential for vaccination-induced resistance to virulent Toxoplasma gondii. Infect Immun 2000; 68: 1026-1033. https://doi.org/10.1128/IAI.68.3.1026-1033.2000
  86. Johnson LL, Sayles PC. Deficient humoral responses underlie susceptibility to Toxoplasma gondii in CD4-deficient mice. Infect Immun 2002; 70: 185-191. https://doi.org/10.1128/IAI.70.1.185-191.2002
  87. Fu YF, Feng M, Ohnishi K, Kimura T, Itoh J, Cheng XJ, Tachibana H. Generation of a neutralizing human monoclonal antibody Fab fragment to surface antigen 1 of Toxoplasma gondii tachyzoites. Infect Immun 2011; 79: 512-517. https://doi.org/10.1128/IAI.00969-10
  88. Cha DY, Song IK, Lee GS, Hwang OS, Noh HJ, Yeo SD, Shin DW, Lee YH. Effects of specific monoclonal antibodies to dense granular proteins on the invasion of Toxoplasma gondii in vitro and in vivo. Korean J Parasitol 2001; 39: 233-240. https://doi.org/10.3347/kjp.2001.39.3.233
  89. Tan F, Hu X, Pan CW, Ding JQ, Chen XG. Monoclonal antibodies against nucleoside triphosphate hydrolase-II can reduce the replication of Toxoplasma gondii. Parasitol Int 2010; 59: 141-146. https://doi.org/10.1016/j.parint.2009.12.007
  90. Ferreira A Jr, Santiago FM, Silva MV, Ferreira FB, Macedo AG Jr, Mota CM, Faria MS, Silva Filho HH, Silva DA, Cunha-Junior JP, Mineo JR, Mineo TW. Production, characterization and applications for Toxoplasma gondii-specific polyclonal chicken egg yolk immunoglobulins. PLoS ONE 2012; 7: e40391. https://doi.org/10.1371/journal.pone.0040391
  91. Larsson A, Balow RM, Lindahl TL, Forsberg PO. Chicken antibodies: taking advantage of evolution-a review. Poult Sci 1993; 72: 1807-1812. https://doi.org/10.3382/ps.0721807

Cited by

  1. Seroprevalence of Toxoplasma gondii Among Primary School Children in Shandong Province, China vol.53, pp.4, 2014, https://doi.org/10.3347/kjp.2015.53.4.489
  2. Vaccination against parasites – status quo and the way forward vol.2, pp.None, 2016, https://doi.org/10.1186/s40813-016-0047-9
  3. PREVALENCE OF TOXOPLASMA GONDII IGG AND IGM AND ASSOCIATED RISK FACTORS AMONG HIV-POSITIVE AND HIV-NEGATIVE PATIENTS IN VHEMBE DISTRICT OF SOUTH AFRICA vol.11, pp.2, 2014, https://doi.org/10.21010/ajid.v11i2.1
  4. A Systematic Review of In vitro and In vivo Activities of Anti -Toxoplasma Drugs and Compounds (2006–2016) vol.8, pp.None, 2014, https://doi.org/10.3389/fmicb.2017.00025
  5. Vaccination with recombinant adenovirus expressing multi-stage antigens of Toxoplasma gondii by the mucosal route induces higher systemic cellular and local mucosal immune responses than with other vol.24, pp.None, 2014, https://doi.org/10.1051/parasite/2017013
  6. The genome of the protozoan parasite Cystoisospora suis and a reverse vaccinology approach to identify vaccine candidates vol.47, pp.4, 2017, https://doi.org/10.1016/j.ijpara.2016.11.007
  7. An evaluation of a recombinant multiepitope based antigen for detection of Toxoplasma gondii specific antibodies vol.17, pp.None, 2014, https://doi.org/10.1186/s12879-017-2920-9
  8. Plant-derived chimeric antibodies inhibit the invasion of human fibroblasts by Toxoplasma gondii vol.6, pp.None, 2018, https://doi.org/10.7717/peerj.5780
  9. Calcium-dependent protein kinases are potential targets for Toxoplasma gondii vaccine vol.7, pp.1, 2018, https://doi.org/10.7774/cevr.2018.7.1.24
  10. Recent progress in microneme-based vaccines development against Toxoplasma gondii vol.7, pp.2, 2014, https://doi.org/10.7774/cevr.2018.7.2.93
  11. Rhoptry antigens as Toxoplasma gondii vaccine target vol.8, pp.1, 2014, https://doi.org/10.7774/cevr.2019.8.1.4
  12. Evaluation of immunogenicity and protection of the Mic1-3 knockout Toxoplasma gondii live attenuated strain in the feline host vol.38, pp.6, 2014, https://doi.org/10.1016/j.vaccine.2019.11.076
  13. A Review on the Prevalence of Toxoplasma gondii in Humans and Animals Reported in Malaysia from 2008–2018 vol.17, pp.13, 2014, https://doi.org/10.3390/ijerph17134809
  14. In Silico Prediction of T and B Cell Epitopes of SAG1-Related Sequence 3 (SRS3) Gene for Developing Toxoplasma gondii Vaccine vol.15, pp.6, 2014, https://doi.org/10.5812/archcid.69241
  15. Toxoplasmosis: stages of the protozoan life cycle and risk assessment in humans and animals for an enhanced awareness and an improved socio-economic status vol.28, pp.1, 2014, https://doi.org/10.1016/j.sjbs.2020.11.007