DOI QR코드

DOI QR Code

Advanced Patterned Vertical Aligned Nematic Mode to Elevate Transmittance

  • Received : 2013.11.08
  • Accepted : 2013.12.13
  • Published : 2014.02.25

Abstract

This paper presents an advanced patterned vertical aligned nematic liquid crystal (APVA) mode as a way of improving the transmittance of the conventional patterned, vertically-aligned nematic liquid crystal (PVA) mode. The APVA was characterized by multi-electrodes, which play an important role in generating a horizontal electric field that prevents LC disclination in the vicinity of the middle region of electrodes between top and bottom slits in PVA mode. The proposed APVA mode focused on improving dramatically the transmittance with excellent image quality. In the simulation, the APVA mode improved the transmittance by more than 22%, compared to the conventional VA modes. Therefore, it is useful to upgrade the LCD display quality.

Keywords

References

  1. M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995). https://doi.org/10.1063/1.115309
  2. K. H. Kim, K. Lee, S. B. Park, J. K. Song, and J. H. Souk, "Domain divided vertical alignment mode with optimized fringe field effect," in Proc. 18th International Display Research Conference (Asia Display 1998) (Seoul, Korea, 1998), pp. 383-386.
  3. S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998). https://doi.org/10.1063/1.122617
  4. S.-T. Wu and C.-S. Wu, "Mixed-mode twisted nematic liquid crystal cells for reflective displays," Appl. Phys. Lett. 68, 1455-1457 (1996). https://doi.org/10.1063/1.116252
  5. T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wideviewing- angle display mode using bend-alignment liquid crystal cell," J. Appl. Phys. 34, L177-L179 (1995). https://doi.org/10.1143/JJAP.34.L177
  6. S.-H. Chen and C.-L. Yang, "Dynamics of twisted nematic liquid crystal pi-cells," Appl. Phys. Lett. 80, 3721-3723 (2002). https://doi.org/10.1063/1.1480880
  7. F. S. Yeung, Y. W. Li, and H.-S. Kwok, "Pi-cell liquid crystal displays at arbitrary pretilt angles," Appl. Phys. Lett. 88, 041108 (2006). https://doi.org/10.1063/1.2165284
  8. J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-domain hybrid-aligned nematic cell fabricated by ion beam treatment of vertical alignment layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005). https://doi.org/10.1143/JJAP.44.1875
  9. S. Park, S. W. Choi, K. H. Kim, D. H. Song, Y. R. Shim, S. Y. Lee, S. G. Kang, J. H. Yoon, B. K. Kim, and T. H. Yoon, "Fast fringe-field-switching liquid crystal cell with a protrusion structure," J. Opt. Soc. Korea 17, 200-204 (2013). https://doi.org/10.3807/JOSK.2013.17.2.200
  10. J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007). https://doi.org/10.1063/1.2769946
  11. J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008). https://doi.org/10.1364/OE.16.002663
  12. S.-T. Wu and D.-K. Yang, Reflective Liquid Crystal Displays (Wiley, New York, USA, 2001).
  13. G. D. Lee, G. H. Kim, T.-H. Yoon, and J. C. Kim, "Configuration optimization of a reflective bistable- twistednematic cell for high-contrast operation," Jpn. J. Appl. Phys. 39, 2716-2719 (2000). https://doi.org/10.1143/JJAP.39.2716
  14. T.-H. Yoon, G. D. Lee, and J. C. Kim, "Nontwist quarterwave liquid-crystal cell for a high contrast reflective display," Opt. Lett. 25, 1547-1549 (2000). https://doi.org/10.1364/OL.25.001547
  15. P. K. Son, J. Yi, J. H. Kwon, and J. S. Gwag, "Single-cell gap-transflective liquid crystal display using two optical modes of a bistable liquid crystal," Appl. Opt. 50, 1333-1337 (2011). https://doi.org/10.1364/AO.50.001333
  16. S. T. Tang, F. H. Yu, J. Chen, M. Wong, H. C. Huang, and H. S. Kwok, "Reflective twisted nematic liquid crystal displays," J. Appl. Phys. 81, 5924-5929 (1997). https://doi.org/10.1063/1.364379
  17. P. K. Son, S. H. Yu, J. Yi, and J. S. Gwag, "Electro-optical characteristics of two domain normally black-electrically controlled birefringence mode," J. Appl. Phys. 50, 1333-1337 (2011).
  18. S. G. Kim, S. M. Kim, Y. S. Kim, H. K. Lee, and S. H. Lee, "Stabilization of the liquid crystal director in the patterned vertical alignment mode through formation of pretilt angle by reactive mesogen," Appl. Phys. Lett. 90, 261910 (2007). https://doi.org/10.1063/1.2752105
  19. Y.-J. Lee, Y.-K. Kim, S. I. Jo, J. S. Gwag. C.-J. Yu, and J.-H. Kim, "Surface-controlled patterned vertical alignment mode with reactive mesogen," Opt. Express 17, 10298-10303 (2009). https://doi.org/10.1364/OE.17.010298
  20. Y. Choi, M. S. Park, J. H. Kwon, and J. S. Gwag, "Omnidirectionally continuous liquid crystal domain structure for high transmittance vertically aligned nematic mode," J. Appl. Phys. 112, 074513 (2012). https://doi.org/10.1063/1.4757965
  21. M. S. Park, J. Yi, J. H. Kwon, and J. S. Gwag, "Fieldcontrolled vertical aligned nematic mode for high performance LCD application," in Proc. SID Sym. Dig. (Washington State Convention Center, Seattle, Washington, USA, 2010), pp. 1751-1754.

Cited by

  1. Optical design for single-mode and single-cell gap transflective liquid crystal displays vol.24, pp.2, 2016, https://doi.org/10.1364/OE.24.001624
  2. Improved Vertically-Aligned Nematic Mode for High Performance Displays vol.18, pp.6, 2014, https://doi.org/10.3807/JOSK.2014.18.6.783
  3. Optical fine-tuning for improving the dark level of a reflective liquid crystal display vol.56, pp.7, 2017, https://doi.org/10.1364/AO.56.001893
  4. Four Domain Vertical Aligned Nematic Mode by Rubbing vol.613, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1032025
  5. Optical Design for Reflective Liquid Crystal Displays vol.613, pp.1, 2015, https://doi.org/10.1080/15421406.2015.1032078
  6. High contrast reflective liquid crystal display using a thermochromic reflector vol.17, pp.2, 2015, https://doi.org/10.1088/2040-8978/17/2/025401
  7. Reflective liquid crystal display for better productivity vol.54, pp.11, 2015, https://doi.org/10.1364/AO.54.003360
  8. Anchoring strength of indium tin oxide electrode used as liquid crystal alignment layer vol.125, pp.6, 2019, https://doi.org/10.1063/1.5086200