DOI QR코드

DOI QR Code

Effect of Sunlight Polarization on the Absorption Efficiency of V-shaped Organic Solar Cells

  • Kang, Kyungnam (Department of Information Display and Advanced Display Research Center, Kyung Hee University) ;
  • Kim, Jungho (Department of Information Display and Advanced Display Research Center, Kyung Hee University)
  • Received : 2013.11.27
  • Accepted : 2014.01.02
  • Published : 2014.02.25

Abstract

We numerically investigate the effect of sunlight polarization on the absorption efficiency of V-shaped organic solar cells (VOSCs) using the finite element method (FEM). The spectral distribution of absorbance and the spatial distribution of power dissipation are calculated as a function of the folding angle for s-and p-polarized light. The absorption enhancement caused by the light-trapping effect was more pronounced for s-polarized light at folding angles smaller than $20^{\circ}$, where s-polarized light has a relatively larger reflectance than p-polarized light. On the other hand, the absorption efficiency for p-polarized light is relatively larger for folding angles larger than $20^{\circ}$, where the smaller reflectance at the interface of the VOSC is more important in obtaining high absorption efficiency.

Keywords

References

  1. K. M. Coakley and M. D. McGehee, "Conjugated polymer photovoltaic cells," Chem. Mater. 16, 4533-4542 (2004). https://doi.org/10.1021/cm049654n
  2. H. Hoppe and N. S. Sariciftci, "Organic solar cells: An overview," J. Mater Res. 19, 1924-1945 (2004). https://doi.org/10.1557/JMR.2004.0252
  3. C. J. Brabec, "Organic solar cells: An overview," Sol. Energy Mater. Sol. Cells 83, 273-292 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
  4. P. Peumans, V. Bulovic, and S. R. Forrest, "Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes," Appl. Phys. Lett. 76, 2650 (2000). https://doi.org/10.1063/1.126433
  5. P. Peumans, A. Yakimov, and S. R. Forrest, "Small molecular weight organic thin-film photodetectors and solar cells," J. Appl. Phys. 93, 3693 (2003). https://doi.org/10.1063/1.1534621
  6. L. S. Roman, O. Inganas, T. Granlund, T. Nyberg, M. Svensson, M. R. Andersson, and J. C. Hummelen, "Trapping light in polymer photodiodes with soft embossed gratings," Adv. Mater. 12, 189-195 (2000). https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<189::AID-ADMA189>3.0.CO;2-2
  7. M. Niggemann, M. Glatthaar, A. Gomber, A. Hinsch, and V. Wittwer, "Diffraction gratings and buried nano-electrodes-architectures for organic solar cells," Thin Solid Films 451-452, 619-623 (2004). https://doi.org/10.1016/j.tsf.2003.11.028
  8. K. Tvingstedt, M. Tormen, L. Businaro, and O. Inganas, "Light confinement in thin film organic photovoltaic cells," Proc. SPIE 6197, 61970C (2006).
  9. K. Tvingstedt, V. Andersson, F. L. Zhang, and O. Inganas, "Folded reflective tandem polymer solar cell doubles efficiency," Appl. Phys. Lett. 91, 123514 (2007). https://doi.org/10.1063/1.2789393
  10. S.-B. Rim, S. Zhao, S. R. Scully, M. D. McGehee, and P. Peumans, "An effective light trapping configuration for thin-film solar cells," Appl. Phys. Lett. 91, 243501 (2007). https://doi.org/10.1063/1.2789677
  11. V. Andersson, K. Tvingstedt, and O. Inganas, "Optical modeling of a folded organic solar cell," J. Appl. Phys. 103, 094520 (2008). https://doi.org/10.1063/1.2917062
  12. B. V. Andersson, N.-K. Persson, and O. Inganas, "Comparative study of organic thin film tandem solar cells in alternative geometries," J. Appl. Phys. 104, 124508 (2008). https://doi.org/10.1063/1.3050346
  13. S. Lee, I. Jeong, H. P. Kim, S. Y. Hwang, T. J. Kim, Y. D. Kim, J. Jang, and J. Kim, "Effect of incidence angle and polarization on the optimized layer structure of organic solar cells," Sol. Energy Mater. Sol. Cells 118, 9-17 (2013). https://doi.org/10.1016/j.solmat.2013.07.040
  14. L. A. A. Pettersson, L. S. Roman, and O. Inganas, "Modeling photocurrent action spectra of photovoltaic devices based on organic thin films," J. Appl. Phys. 86, 487-496 (1999). https://doi.org/10.1063/1.370757
  15. D. Cheyns, B. P. Rand, B. Verreet, J. Genoe, J. Poortmans, and P. Heremans, "The angular response of ultrathin film organic solar cells," Appl. Phys. Lett. 92, 243310 (2008). https://doi.org/10.1063/1.2949745
  16. A. Meyer and H. Ade, "The effect of angle of incidence on the optical field distribution within thin film organic solar cells," J. Appl. Phys. 106, 113101 (2009). https://doi.org/10.1063/1.3253718
  17. S. Jung, K.-Y. Kim, Y.-I. Lee, J.-H. Youn, H.-T. Moon, J. Jang, and J. Kim, "Optical modeling and analysis of organic solar cells with coherent multilayers and incoherent glass substrate using generalized transfer matrix method," Jpn. J. Appl. Phys. 50, 122301 (2011). https://doi.org/10.7567/JJAP.50.122301
  18. J. Kim, S. Jung, and I. Jeong, "Optical modeling for polarizationdependent optical power dissipation of thin-film organic solar cells at oblique incidence," J. Opt. Soc. Korea 16, 6-12 (2012). https://doi.org/10.3807/JOSK.2012.16.1.006
  19. S. Jung, Y.-I. Lee, J.-H. Youn, H.-T. Moon, J. Jang, and J. Kim, "Effect of the active-layer thickness on the shortcircuit current analyzed using the generalized transfer matrix method," J. Inf. Display 14, 7-11 (2013). https://doi.org/10.1080/15980316.2012.754382
  20. K. Kang, S. Lee, and J. Kim, "Effect of an incoherent glass substrate on the absorption efficiency of organic solar cells at oblique incidence analyzed by the transfer matrix method with a glass factor," Jpn. J. Appl. Phys. 52, 052301 (2013). https://doi.org/10.7567/JJAP.52.052301
  21. COMSOL Multiphysics, Version 4.3a Comsol Inc. (2012), http://www.comsol.com.

Cited by

  1. Optimization of multilayer structures for V-shaped organic solar cells vol.53, pp.12, 2014, https://doi.org/10.7567/JJAP.53.122304
  2. A Simple Numerical Modeling of the Effect of the Incoherent Thick Substrate in Thin-Film Solar Cells Based on the Equispaced Thickness Method vol.8, pp.5, 2016, https://doi.org/10.1109/JPHOT.2016.2614098
  3. Integrated optoelectronic model for organic solar cells based on the finite element method including the effect of oblique sunlight incidence and a non-ohmic electrode contact vol.55, pp.10, 2016, https://doi.org/10.7567/JJAP.55.102301
  4. Synthesis and Exploitation in Solar Cells of Hydrothermally Grown ZnO Nanorods Covered by ZnS Quantum Dots vol.18, pp.4, 2014, https://doi.org/10.3807/JOSK.2014.18.4.307
  5. Effect of oblique incidence angle of sunlight on the optimized folding angle of V-shaped organic solar cells vol.15, pp.4, 2015, https://doi.org/10.1016/j.cap.2015.01.019