DOI QR코드

DOI QR Code

Mixing Effects of Anaerobic Digestion Efficiency on Livestock Wastewater Treatment

교반이 축산폐수의 혐기성 처리효율에 미치는 영향

  • Lee, Jong-Ho (Department of Environment Engineering, Inha University) ;
  • Sung, Il-Wha (Department of Environmental & Energy Engineering, Gachon University)
  • 이종호 (인하대학교 환경공학과) ;
  • 성일화 (가천대학교 환경에너지공학과)
  • Received : 2013.12.06
  • Accepted : 2014.01.09
  • Published : 2014.01.31

Abstract

Mixing effect on anaerobic digestion of livestock wastewater was different results depending on the researchers have been reported. The purpose of this study was to understand application of Korea livestock waste it was necessary to determine the effect of mixing. 4 anaerobic reactors were operated mesophilic and thermophilic temperature with continuous mixing or non mixing condition, respectively. Experimental result showed If temperature was same, TCOD removal efficiency of continuous mixing reactor was 0.11-0.58% higher than non mixing reactor. Different mesophilic and thermophilic temperature, there was no significant difference of TCOD removal efficiency. Continuously mixed digester gas production was 1.7-4.6% higher than non mixed digester. In addition, mesophilic digester gas production was 29.1-32.1% higher than the thermophilic digester. It was due to the thermophilic digester believe the inhibition of ammonia. This study suggest that the optimized operation condition of anaerobic digestion for livestock wastewater treatment was mesophilic continuous mixing state.

본 연구는 축산폐수의 혐기성 처리 시 교반의 영향에 대하여 연구자에 따라 서로 다른 결과가 보고되어 우리나라 축산폐수에 적용 시 교반의 영향을 파악할 필요가 있어 실시하였다. 4개의 혐기성 소화조를 중온 또는 고온으로 유지하면서 연속적으로 교반시키거나 교반 시키지 않고 운전하였다. 온도가 같은 경우 연속으로 교반한 반응조가 교반하지 않은 반응조의 TCOD 제거효율에 비하여 0.11-0.58% 높게 나타났다. 그리고 중온 소화조의 TCOD 제거효율이 고온 소화조의 TCOD 제거효율과 거의 같아 온도에 따른 TCOD 제거효율 간에는 큰 차이가 없었다. 연속적으로 교반한 소화조의 가스 발생량이 교반하지 않은 소화조에 비하여 1.7-4.6% 많았다. 또한 중온 소화조의 가스 발생량은 고온 소화조보다 29.1-32.1% 높고 메탄 발생량도 많았는데 이는 고온 소화조의 암모니아 저해로 인한 것으로 판단된다. 이러한 실험 결과를 종합하면 축산폐수를 혐기성으로 처리 시 중온에서 운전되고 연속적으로 교반한 반응조의 운전 조건이 더 좋은 것으로 판단된다.

Keywords

References

  1. Mills P. J., "Minimization of energy input requirements of an anaerobic digester", Agric. Wastes, 1(1), pp.57-59, 1979. DOI: http://dx.doi.org/10.1016/0141-4607(79)90007-6
  2. Ben-Hasson R. M., Ghaly A. E., Singh R. K., "Design and evaluation of no-mix energy efficient anaerobic digester", Proceedings, Annual Meeting, Canadian Soc of Agric Engineering, pp.105-112, 1985.
  3. Dolfing J., "The energetic consequences of hydrogen gradients in methanogenic ecosystems", FEMS Microbiol. Ecol., 101(3), pp.183-187, 1992. DOI: http://dx.doi.org/10.1016/0168-6496(92)90034-Q
  4. Karim K., Hoffmann R., Klasson K.T., Al-Dahhan M.H., "Anaerobic digestion of animal waste: effect of mode of mixing", Water Research, 39(15), pp.3597-3606, 2005. DOI: http://dx.doi.org/10.1016/j.watres.2005.06.019
  5. Song Y. C., Kwon S. J., Woo J. H., "Comparative performance of mesophilic-thermophilic co-phase anaerobic digestion to single stage mesophilic and thermophilic digestions of sewage sludge", J. of Korean Soc of Environ Eng, 23(6), pp.739-746, 2003
  6. APHA, Standard Methods for the Examination of Water and Wastewater, 19th Ed., New York, 1995.
  7. Ministry of Environment notification 2011-103, Water quality official test method enacted by Korean Ministry of Environment; 2011. 6. 16.
  8. Bitton G, Wastewater Microbiology, 1st ed., p.229-245, Wiley-Liss, 1994.
  9. Shin H. S., Song Y. C., Mun M. J., "A study on the feasibility of anaerobic digestion of food wastes by biodegradability test", J. Korea Solid Wastes Eng. Society, 10(1), pp.35-42, 1993.
  10. Brummeler E. T., Koster I. W., Zeevalkimkm J. A., "Dry digestion of the organic fraction of municipal solids waste in a batch process", Anaerobic Digestion Symp. 5th, Pergamon, pp.335-344, 1988.
  11. McCarty P. L., "Anaerobic waste treatment fundamentals part 2: environmental requirements and control", Public Works, Oct., pp.123-126, 1964.
  12. Bae J. H., Cho K. M., "Anaerobic Treatment(I)", J. of The Korean Soc of Water and Wastewater, No.4, pp.85-97, 1994.
  13. Ostergard N., Biogasproduktion i det themofile temperaturinterval, STUB rapport nr. 21, p.96-110, Kemiteknik, Dansk Teknologisk Institut, Taastrup, 1985.
  14. Van Velsen A. F. M., "Adaption of methanogenic sludge to high ammonia-nitrogen concentrations", Water Research, 13(10), pp.995-999, 1979. DOI: http://dx.doi.org/10.1016/0043-1354(79)90194-5
  15. Hashimoto A. G., "Ammonia inhibition of methanogenesis from cattle wastes", Agric. Wastes, 17(4), pp.241-261, 1986. DOI: http://dx.doi.org/10.1016/0141-4607(86)90133-2
  16. Angelidaki I., Ahring B. K., "Thermophilic anaerobic digestion of livestock waste: effect of ammonia", Appl. Microbiol. Biotechnol., 38(4), pp.560-564, 1993. DOI: http://dx.doi.org/10.1007/BF00242955
  17. Braun R., Huber P., Meyrath J., "Ammonia toxicity in liquid piggery manure digestion", Biochnol. Lett.., 3(4), pp.159-164, 1981. DOI: http://dx.doi.org/10.1007/BF00239655
  18. De Baere L. A., Devocht M., Van Assche P., Verstraete W., "Influence of high NaCl and NH4Cl salt levels on methanogenic associations", Water Research, 18(5), pp.543-548, 1984. DOI: http://dx.doi.org/10.1016/0043-1354(84)90201-X
  19. Van Velsen A. F. M., Anaerobic digestion of piggery waste, Wageningen, p.21-40, The Netherlands, Dept. Water Pollution Control, Agricultural University, 1981.
  20. Parkin G. F., Miller S. W., "Response of methane fermentation to continuous addition of selected industrial toxicants", Proceedings of the 37th Industrial Waste Conference, pp726-743, 1983.
  21. Angelidaki I., Ahring B. K., "Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature", Water Research, 28(3), pp.727-731, 1994. DOI: http://dx.doi.org/10.1016/0043-1354(94)90153-8

Cited by

  1. Evaluating Feeding of Organic Waste and Stirring Interval to Optimize Anaerobic Digestion vol.39, pp.4, 2014, https://doi.org/10.5307/JBE.2014.39.4.366