DOI QR코드

DOI QR Code

모래지반에서 팽창각에 따른 연속기초와 원형기초의 지지력계수 Nγ와 형상계수에 대한 수치해석 연구

Numerical Studies on Bearing Capacity Factor Nγ and Shape Factor of Strip and Circular Footings on Sand According to Dilatancy Angle

  • 김동준 (현대건설(주) 연구개발본부) ;
  • 윤준웅 (현대건설(주) 연구개발본부) ;
  • 지성현 (현대건설(주) 연구개발본부) ;
  • 최재형 (현대건설(주) 연구개발본부) ;
  • 이진선 (원광대학교 토목환경공학과) ;
  • 김동수 (한국과학기술원 건설및환경공학과)
  • 투고 : 2013.10.08
  • 심사 : 2013.12.30
  • 발행 : 2014.01.31

초록

모래지반의 지표면에 위치한 거친 바닥면을 가진 강체 연속기초와 원형기초에 대하여 수치해석을 이용하여 팽창각 변화에 따른 지지력계수 $N_{\gamma}$와 형상계수를 구하였다. 양해법(explicit method)에 기반한 유한차분해석을 이용하여 지지력계수를 산정하기 위한 수치모델과 해석절차를 개발하고, Mohr-Coulomb 소성모델을 이용하여 다양한 내부마찰각(${\phi}$)과 팽창각(${\psi}$) 범위에 대하여 지지력계수를 도출하였다. 팽창각이 감소됨에 따라 지지력도 감소하는 것으로 나타났으며, 보편적인 지지력계수 제안식들이 가정하고 있는 관련흐름법칙(associated flow-rule)이 적용된 경우(${\psi}={\phi}$)를 기준으로 비관련흐름법칙(nonassociated flow-rule)이 적용된 경우(${\psi}$ < ${\phi}$)의 상대적인 지지력 비율을 산출하였고, 일반적인 모래에 대한 관계식을 제안하였다. 원형기초의 형상계수는 연속기초의 평면변형률 조건의 고려 여부에 따라 크게 변하였으며, 평면변형률 조건을 고려하여 내부마찰각을 증가시킨 경우가 기존의 실험 결과와 유사한 경향을 나타내었다. 형상계수 제안식들의 경향이 차이를 나타내는 원인에 대하여 고찰하고 설계시 적용 방안을 제시하였다.

Bearing capacity factor $N_{\gamma}$ and shape factor were studied for rigid strip and circular footings with a rough base on sand by numerical modelling considering the effect of dilation angle. The numerical model was developed with an explicit finite difference code. Loading procedures and interpretation methods were devised in order to shorten the running time while eliminating the exaggeration of the reaction caused by the explicit scheme. Using the Mohr-Coulomb plasticity model with associated (${\psi}={\phi}$) and nonassociated (${\psi}$ < ${\phi}$) flow-rules, the bearing capacity factor $N_{\gamma}$ was evaluated for various combinations of internal friction angles and dilation angles. Bearing capacity factor decreased as the dilation angle was reduced from the associated condition. An equation applicable to typical sands was proposed to evaluate the relative bearing capacity for the nonassociated condition compared to the associated condition on which most bearing capacity factor equations are based. The shape factor for the circular footing varied substantially when the plane-strain effect was taken into account for the strip footing. The numerical results of this study showed closer trends with the previous experimental results when the internal friction angle was increased for the strip footing. Discussions are made on the reason that previous equations for the shape factor give different results and recommendations are made for the appropriate design shape factor.

키워드

참고문헌

  1. API RP 2A-WSD (2005), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms - WSD (Working Stress Design), American Petroleum Institute, Washington, DC.
  2. API RP 2GEO (2011), Recommended Practice for Geotechnical Foundation Design Consideration, American Petroleum Institute, Washington, DC.
  3. Benmebarek, S., Remadna, M. S., Benmebarek, N., and Belounar, L. (2012), Numerical evaluation of the bearing capacity factor $N_{\gamma}$ of ring footings, Computers and Geotechnics, Vol.44, June 2012, pp.132-138. https://doi.org/10.1016/j.compgeo.2012.04.004
  4. Bolton, M. D. (1986), The strength and dilatancy of sands, Geotechnique, Vol.36, Issue 1, March 1986, pp.65-78. https://doi.org/10.1680/geot.1986.36.1.65
  5. Bolton, M. D. and Lau, C. K. (1993), Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil, Canadian Geotechnical Journal, Vol.30, No.6, pp.1024-1033. https://doi.org/10.1139/t93-099
  6. Booker, J. R. (1970), Application of Theories of Plasticity to Cohesive Frictional Soils, Ph.D. Thesis, University of Sydney, Australia.
  7. Brinch Hansen, J. (1970), A Revised and Extended Formula for Bearing Capacity, Akademiet for de Tekniske Videnskaber, Geoteknisk Institut, Bulletin No.28, Copenhagen, pp.5-11.
  8. Caquot, A. and Kerisel, J. (1953), Sur le Terme de Surface dans le Calcul des Foundations en Milieu Pulverulent, Proc. 3rd Int. Conf. on Soil Mechanics and Foundation Engineering, Vol.I, Zurich, pp.336-337.
  9. De Beer, E. E. (1970), Experimental determination of the shape factors and the bearing capacity factors of sand, Geotechnique, Vol.20, No.4, pp.387-411. https://doi.org/10.1680/geot.1970.20.4.387
  10. De Borst, R. and Vermeer, P. A. (1984), Possibilities and limitations of finite elements for limit analysis, Geotechnique, Vol.34, No.2, pp.199-210. https://doi.org/10.1680/geot.1984.34.2.199
  11. Drescher, A. and Detournay, E. (1993), Limit load in translational failure mechanisms for associative and non-associative materials, Geotechnique, Vol.43, No.3, pp.443-456. https://doi.org/10.1680/geot.1993.43.3.443
  12. Drucker, D. C., Prager, W., and Greenberg, H. J. (1952), Extended limit design theorems for continuous media, Quart. Appl. Math, Vol.9, No.4, pp.381-389.
  13. Erickson, H. L. and Drescher, A. (2002), Bearing capacity of circular footings, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.1, pp.38-43. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:1(38)
  14. Eurocode 7 (2004), (EN 1997-1) Geotechnical Design, Part I: General Rules, Deutsches Institut fur Normung e.V., Berlin.
  15. Frydman, S. and Burd, H. J. (1997), Numerical studies of bearingcapacity factor $N_{\gamma}$, Journal of Geotechnical and Geoenvironmental Engineering, Vol.123, No.1, pp.20-29. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:1(20)
  16. Golder, H. Q., Fellenius, W., Kogler, F., Meischeider, H., Krey, H., and Prandtl, L. (1941), The ultimate bearing pressure of rectangular footings, Journal of the ICE, Vol.17, No.2, pp.161-174. https://doi.org/10.1680/ijoti.1941.13728
  17. Griffiths, D. V. (1982), Computation of bearing capacity factors using finite elements, Geotechnique, Vol.32, No.3, pp.195-202. https://doi.org/10.1680/geot.1982.32.3.195
  18. Hansen, B. (1979), Definition and use of frictional angles, Proc. Int. Conf. VII, ECSMFE Brighton, UK.
  19. Hjiaj, M., Lyamin, A. V., and Sloan, S. W. (2005), Numerical limit analysis solutions for the bearing capacity factor $N_{\gamma}$, International Journal of Solids and Structures, Vol.42, No.5, pp.1681-1704. https://doi.org/10.1016/j.ijsolstr.2004.08.002
  20. Ibsen, L.B., Barari, A., and Larsen, K.A. (2012), Modified vertical bearing capacity for circular foundations in sand using reduced friction angle, Ocean Engineering, Vol.47, pp.1-6. https://doi.org/10.1016/j.oceaneng.2012.03.003
  21. ISO 19901-4 (2003), Petroleum and Natural Gas Industries - Specific Requirements for Offshore Structures, Part 4: Geotechnical and Foundation Design considerations, International Organization for Standardization, Switzerland.
  22. Itasca Consulting Group Inc. (2011), FLAC, Fast Lagrangian analysis of continua, Version 7, Minneapolis, USA.
  23. Kim, Y. M. and Kang, S. W. (2010), A Study on Comparison of Finite Element Analysis with Model Test of Shallow Footing Failure for Cohesionless Soil with Non-associated Plasticity and Some Smooth Footing, Journal of Korean Geosynthetics Society, Vol.9, No.1, pp.13-20.
  24. Krabbenhoft, K., Karim, M. R., Lyamin, A. V., and Sloan, S. W. (2012), Associated computational plasticity schemes for nonassociated frictional materials, International Journal for Numerical Methods in Engineering, Vol.90, No.9, pp.1089-1117. https://doi.org/10.1002/nme.3358
  25. Kumar, J. (2003), $N_{\gamma}$ for rough strip footing using the method of characteristics, Canadian Geotechnical Journal, Vol.40, No.3, pp.669-674. https://doi.org/10.1139/t03-009
  26. Lambe, T. W. and Whitman, R. V. (2008), Soil mechanics SI version, John Wiley and Sons.
  27. Lee, J. H. (2002), Comparison of Bearing Capacity Calculation Methods for Shallow Foundations, Master thesis, Hanyang University.
  28. Lee, Y. J. and Lee, J. M. (2010), Evaluation of Vertical stress on shallow footing based on Numerical Modelling, Korean Geotechnical Society Magazine, Vol.26, No.5, pp.48-49.
  29. Loukidis, D. and Salgado, R. (2009), Bearing capacity of strip and circular footings in sand using finite elements, Computers and Geotechnics, Vol.36, No.5, pp.871-879.
  30. Marti, J. and Cundall, P. (1982), Mixed discretization procedure for accurate modelling of plastic collapse, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.6, No.1, pp.129-139. https://doi.org/10.1002/nag.1610060109
  31. Martin, C. M. (2004), ABC User Manual.
  32. Martin, C. M. (2005), Exact bearing capacity calculations using the method of characteristics, Proc. of th 11th IACMAG, Vol.4, Turin, pp.441-450.
  33. Meyerhof, G. G. (1951), The Ultimate Bearing Capacity of Foundations, Geotechnique, Vol.2, No.4, pp.301-332. https://doi.org/10.1680/geot.1951.2.4.301
  34. Meyerhof, G. G. (1963), Some recent research on the bearing capacity of foundations, Canadian Geotechnical Journal, Vol.1, No.1, pp.16-26. https://doi.org/10.1139/t63-003
  35. Meyerhof, G. G. (1974), Ultimate bearing capacity of footings on sand layer overlying clay, Canadian Geotechnical Journal, Vol.11, No.2, pp.223-229. https://doi.org/10.1139/t74-018
  36. Michalowski, R. L. (1997), An estimate of the influence of soil weight on bearing capacity using limit analysis, Soils and Foundations, Vol.37, No.4, pp.57-64. https://doi.org/10.3208/sandf.37.4_57
  37. NCHRP Report 651 (2010), LRFD Design and Construction of Shallow Foundations for Highway Bridge Structures, Transportation Research Board, Washington, DC.
  38. PLAXIS bv (2007), PLAXIS 3D Foundation User Manual.
  39. Potts, D. M. and Zdravkovic, L. (2001), Finite element analysis in geotechnical engineering: applications. London, Thomas Telford Ltd.
  40. Prandtl, L. (1920), Ueber die Haerte plastischer Koerper, Nachrichten der Gesellschaft der Wissenschaften, Berichte der mathem.-physikal, Klasse, pp.74-85.
  41. Reissner, H. (1924), Zum Erddruckproblem, Proc. 1st Int. Congress of Applied Mechanics, Delft, pp.295-311.
  42. Salgado, R. (2008), The engineering of foundations, New York, McGraw Hill.
  43. Shield, R.T. (1954), Plastic potential theory and Prandtl bearing capacity solution, J. Appl. Mech., Vol.21, No.2, pp.193-194.
  44. Sokolovskii, V. V. (1965), Statics of Soil Media, Pergamon Press.
  45. Terzaghi, K. (1943), Theoretical Soil Mechanics, John wiley and Sons, New York.
  46. Vermeer, P. A. (1990), The orientation of shear bands in biaxial tests, Geotechnique, Vol.40, No.2, pp.223-236. https://doi.org/10.1680/geot.1990.40.2.223
  47. Vesic, A. (1973), Analysis of Ultimate Loads of Shallow Foundations, Journal of the Soil Mechanics and Foundations Division, Vol.99, No.1, pp.54-73.
  48. Vesic, A. (1975), Bearing Capacity of Shallow Foundations, In Foundation Engineering Handbook, H. F. Winterkorn and H. Y. Fang, eds., Van Nostrand Reinhold, New York, pp.121-147.
  49. Wood, D. M. (2004), Geotechnical Modelling, Taylor and Francis.
  50. Zhao, L. and Wang, J. H. (2009), Influence of nonassociativity on the bearing capacity factors of a circular footing, Journal of Shanghai Jiaotong University (Science), Vol.14, pp.429-434.
  51. Zhu, F., Clark, J. I., and Phillips, R. (2001), Scale effect of strip and circular footings resting on dense sand, Journal of Geotechnical and Geoenvironmental engineering, Vol.127, No.7, pp.613-621. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:7(613)
  52. Zhu, M. and Michalowski, R. L. (2005), Shape factors for limit loads on square and rectangular footings, Journal of Geotechnical and Geoenvironmental Engineering, Vol.131, No.2, pp.223-231. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:2(223)

피인용 문헌

  1. 사질토 지반에 설치된 버킷기초의 수직 하중전이 특성 vol.31, pp.7, 2014, https://doi.org/10.7843/kgs.2015.31.7.29
  2. 사질토 지반에 설치된 버킷기초 및 얕은기초의 수직지지력 산정 vol.16, pp.9, 2014, https://doi.org/10.14481/jkges.2015.16.9.33
  3. 유한요소해석을 통한 다층지반에서의 버킷기초 수직지지력 산정 vol.32, pp.7, 2014, https://doi.org/10.7843/kgs.2016.32.7.35
  4. 복합하중을 고려한 국내 서남해 지반에서의 Spudcan 설계 vol.17, pp.10, 2014, https://doi.org/10.14481/jkges.2016.17.10.13
  5. 사질토 지반에 설치된 버킷기초의 강성 vol.18, pp.8, 2014, https://doi.org/10.14481/jkges.2017.18.8.5