DOI QR코드

DOI QR Code

Propagation Behavior and Structural Variation of C3H8-Air Premixed Flame with Frequency Change in Ultrasonic Standing Wave

정상초음파의 주파수 변화에 따른 C3H8-Air 예혼합화염의 전파거동 및 구조변이

  • 이상신 (부경대학교 기계공학과) ;
  • 서항석 ((주)한화 대전사업장 개발팀) ;
  • 김정수 (부경대학교 기계공학과)
  • Received : 2013.11.26
  • Accepted : 2014.01.10
  • Published : 2014.02.01

Abstract

The propagation behavior and structural variation of a premixed propane/air flame with frequency change in an ultrasonic standing wave at various equivalence ratios were experimentally investigated using Schlieren photography and pressure measurement. The propagating flame was observed in high-speed Schlieren images, allowing local flame velocities of the moving front to be analyzed in detail. The study reveals that the distorted flame front and horizontal splitting in the burnt zone are due to the ultrasonic standing wave. Vertical locations of the distortion and horizontal stripes are intimately dependent on the frequency of the ultrasonic standing wave. In addition, the propagation velocity of the flame front bounded by the standing wave is greater than that of the flame front without acoustic excitation. As expected, the influence of the ultrasonic standing wave on premixed-flame propagation becomes more prominent as the frequency increases.

정상초음파장의 주파수 변이가 프로판/공기 예혼합화염의 전파거동 및 구조변이에 미치는 영향을 규명하기 위해 실험적 연구를 수행하였다. 다양한 당량비 조건에서 슐리렌 기법을 적용한 전파화염 가시화와 연소실 내부압력 측정을 통해 생성물 영역에서의 화염 구조변화 및 전파특성을 관찰하였다. 정상초음파가 존재할 경우 화염선단이 찌그러지고 기연부에서 횡방향 줄무늬가 생성되며, 이러한 구조변이는 정상초음파의 주파수에 종속한다. 또, 전파속도는 정상초음파가 교반하는 경우 증가되며, 화염전파 거동에 미치는 초음파의 영향은 주파수의 증가에 따라 보다 명확해진다는 사실도 확인되었다.

Keywords

References

  1. Jomaas, G., Law, C. K. and Bechtold, J. K., 2007, "On Transition to Cellularity in Expanding Spherical Flames," J. Fluid Mech., Vol. 583, pp. 1-26. https://doi.org/10.1017/S0022112007005885
  2. Williams, F. A., CA: 1985, Combustion Theory, 2nd edition, Addison-Wesley, Redwood.
  3. Bechtold, J. K. and Matalon, M., 1987, " Hydrodynamic and Diffusion Effects on the Stability of Spherically Expanding Flames, "Combustion and Flame, Vol. 67, Issue 1, pp. 77-90. https://doi.org/10.1016/0010-2180(87)90015-0
  4. Huzayyin, A. S., Moneib, H. A., Shehatta, M. S. and Attia, A. M. A., 2008, "Laminar Burning Velocity and Explosion Index of LPG-Air and Propane-Air Mixtures", Fuel, Vol. 87, Issue 1, pp. 39-57. https://doi.org/10.1016/j.fuel.2007.04.001
  5. Vu, T. M., Song, W. S., Park, J., Kwon, O. B., Bae, D. S., Yun, J. H. and Keel, S. I., 2011, "Effects of Hydrocarbon Addition on Cellular Instabilities in Expanding Syngas-Air Spherical Premixed Flames," Trans. Korean Soc. Mech. Eng. B, Vol. 35, No. 2, pp.179-188. https://doi.org/10.3795/KSME-B.2011.35.2.179
  6. Ellis, O. C. and De, C., 1928, "Flame Movement in Gaseous Explosive Mixtures (Part 7)," Fuel in Science and Practice 7, pp. 502-508.
  7. Guenoche, H., 1964, Nonsteady Flame Propagation, Markstein, G. H. Ed., Pergamon, New York, pp. 107-176.
  8. Dunn-Rankin, D. and Sawyer, R. F., 1998, "Tulip Flames: Change in Shape of Premixed Flames Propagating in Closed Tubes," Exp. Fluids, Vol. 24, Issue 2, pp. 130-140. https://doi.org/10.1007/s003480050160
  9. Clanet, C. and Searby, G., 1996, "On the "Tulip Flame" Phenomenon," Combustion and Flame, Vol. 105, Issues 1-2, pp. 225-238. https://doi.org/10.1016/0010-2180(95)00195-6
  10. Bychkov, V. V. and Liberman, M. A., 2000, "Dynamics and Stability of Premixed Flames," Physics Reports, Vol. 325, Issues 4-5, pp. 115-238. https://doi.org/10.1016/S0370-1573(99)00081-2
  11. Park, J. S., Fujita, O., Honko, T., Yamada, Y., Ito, H. and Nakamura, Y., 2010, "Phenomena in Oscillating Downward Propagating Flames Induced by External Laser Irradiation," Experimental Thermal and Fluid Science, Vol. 34, Issue 8, pp. 1290-1294. https://doi.org/10.1016/j.expthermflusci.2010.05.010
  12. Gonzalez, M., 1996, "Acoustic Instability of a Premixed Flame Propagating in a Tube," Combustion and Flame, Vol. 107, No. 3, pp. 245-259. https://doi.org/10.1016/S0010-2180(96)00069-7
  13. Seo, H. S., Lee, S. S. and Kim, J. S., 2011, "Structural Variation of Methane/Air Premixed Flame Caused by the Intervention of Ultrasonic Standing-wave," J. the Korean Society of Propulsion Engineers, Vol. 15, No. 6, pp. 1-6.
  14. Seo, H. S., Lee, S. S. and Kim, J. S., 2012, "Agitation Effect of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame," J. the Korean Society of Propulsion Engineers, Vol. 16, No. 3, pp. 16-23.
  15. Lee, S. S., Seo, H. S. and Kim, J. S., 2012, "Interacting Effects of an Ultrasonic Standing-wave on the Propagation Behavior and Structural Stabilization of Propane/Air Premixed Flame," J. the Korean Society of Propulsion Engineers, Vol. 16, No. 6, pp. 1-8.
  16. Seo, H. S., Lee, S. S. and Kim, J. S., 2013, "Effects of the Equivalence Ratio on Propagation Characteristics of CH4-Air Premixed Flame Intervened by an Ultrasonic Standing Wave," J. the Korean Society of Propulsion Engineers, Vol. 17, No. 2, pp. 16-23.
  17. Kim, J. S., Seo, H. S. and Lee, S. S., 2012, "An Evolution of the Premixed Flame Precipitated by Ultrasonic Standing Wave," AIAA 2012-4032.

Cited by

  1. A Schlieren-photographic Visualization of the Methane/Air Premixed Flame Propagating inside a Rectangular Tube Locally-perturbed by an Ultrasonic Standing Wave vol.18, pp.4, 2014, https://doi.org/10.6108/KSPE.2014.18.4.043
  2. Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (I) vol.19, pp.4, 2015, https://doi.org/10.6108/KSPE.2015.19.4.037
  3. Frequency-Equivalence Ratio Correlation Analysis of Methane-Air Premixed Flame Influenced by Ultrasonic Standing Wave (II) vol.19, pp.4, 2015, https://doi.org/10.6108/KSPE.2015.19.4.045