DOI QR코드

DOI QR Code

Visualization of Temperature Elevation Due to Focused Ultrasound in Dissipative Acoustic Medium

음향감쇠매질 내에서 집속초음파에 의한 온도상승의 가시화

  • Received : 2013.07.12
  • Accepted : 2013.12.02
  • Published : 2014.01.31

Abstract

The temperature change due to focused ultrasound in dissipative acoustic medium is very important because it provides us much information. To measure the temperature change inside of the dissipative acoustic medium non-invasively, we adopt a temperature sensitive film which has thermochromic particles with critical temperature of $30^{\circ}C$. As a dissipative acoustic medium, agar layer is chosen in the study. The temperature change due to the ultrasound was measured depending on the concentration of the sugar in the agar layer. The color change on the film due to the ultrasound was investigated when the concentration of sugar was from 25% to 40%. As the result, there were rapid increases of discolored area on the film within 2~5 second after the ultrasound driving and the increasing rates decreased after the period. To compare the simulation results were also shown. However in the simulated result, the discolored areas linearly increased from start to 10 seconds. The reason of the differences between the experimental results and simulated ones is that the change of thermal conductivity and heat capacity of the medium were not considered in the simulation program.

음향감쇠매질 내에서 집속 초음파에 의한 온도 분포 변화를 파악하는 것은 다양한 분야에 매우 중요한 정보를 제공할 수 있다. 본 연구는 음향감쇠매질 내에 임계온도 $30^{\circ}C$인 시온안료를 사용한 감온 필름을 삽입하여 비침습적으로 온도 상승 효과를 조사하였다. 음향감쇠매질은 한천과 설탕을 섞어 제작하였으며 매질내 음향특성을 제어하기위해 사용한 설탕 농도는 25 %에서 40 %까지 변화시켰다. 집속 초음파에 의한 온도상승 효과를 감온 필름의 변색영역의 변화로 관찰한 결과 초음파 방사 후 2~5 s 사이에 급격한 변색 영역의 증가를 보이다가 그 이 후 완만한 변화를 보였다. 시뮬레이션에서는 실험 결과와는 달리 초음파 방사후 10 s까지 선형적으로 변색영역이 증가하는 경향을 보였다. 이는 매질의 열전도도 및 열용량은 온도에 따라 변하는 값을 가지는데, 시뮬레이션에는 이를 고려하지 못했기 때문으로 사료된다.

Keywords

References

  1. C. Simon, P. VanBaren, and E. S. Ebbini, "Two-dimensional temperature estimation using diagnostic ultrasound," IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, 45, 1088-1099, (1998). https://doi.org/10.1109/58.710592
  2. J. Wu and G. Du, "Temperature elevation generated by a focused Gaussian beam of ultrasound," Ultrasound Med Biol. 16, 489-498, (1990). https://doi.org/10.1016/0301-5629(90)90171-8
  3. D. S. Ellis and W. D. O'Brien Jr., "The Monopole-source solution for estimating tissue temperature increases for focused ultrasound fields," IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, 43, 88-97, (1996). https://doi.org/10.1109/58.484468
  4. W. L. Nyborg, "Heat generation by ultrasound in a relaxing medium," J. Acoust. Soc. Am. 70, 310-312, (1981). https://doi.org/10.1121/1.386778
  5. J. A. Jensen, "A model for the propagation and scattering of ultrasound in tissue," J. Acoust. Soc. Am. 89, 182-190, (1991). https://doi.org/10.1121/1.400497
  6. M. G. Curley, "Soft tissue temperature rise caused by scanned diagnostic ultrasound," IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, 40, 59-66, (1993). https://doi.org/10.1109/58.184999
  7. M. Pernot, M. Tanter, J. Bercoff, K. R. Waters, and M. Fink, "Temperature estimation using ultrasonic spatial compound imaging," IEEE Transactions On Ultrasonics, Ferroelectrics, and Frequency Control, 51, 606-615, (2004). https://doi.org/10.1109/TUFFC.2004.1320832
  8. R. Seip, and E. S. Ebbini, "Noninvasive estimation of tissue temperature response to heating fields using diagnostic ultrasound," IEEE Transactions on Biomedical Engineering, 42, 828-839, (1995). https://doi.org/10.1109/10.398644
  9. J. Kim, M. Kim, and K. Ha, "Visualization of thermal distribution caused by focused ultrasound field in an agar phantom," Jpn. J. Appl. Phys. 50, 07HC081-07HC083, (2011).
  10. J. Kim, M. Kim, Y. Park, and K. Ha, "Acoustic characteristics of a tissue mimicking phantom for visualization of thermal distribution," Jpn. J. Appl. Phys. 51, 07GB101-07GB103, (2012).
  11. S. park, S. Guntur. K. Lee, D. Paeng, and M. Choi, "Reusable ultrasonic tissue mimicking hydro gels containing nonionic surface active agent for visualizing thermal lesions," IEEE Trans Biomed Eng. 57, 194-202, (2010). https://doi.org/10.1109/TBME.2009.2031314
  12. M. Choi, S. Guntur, J. Lee, D. Paeng, K. Lee and A. Coleman. "Changes in ultrasonic properties of liver tissue in vitro during heating-cooling cycle concomitant with thermal coagulation," Ultrasound Med Biol. 37, 2000-2012, (2011). https://doi.org/10.1016/j.ultrasmedbio.2011.06.015
  13. M. Choi, S. Guntur, K. Lee, D. Paeng and A. Coleman, "A tissue mimicking polyacrylamide hydrogel phantom for visualizing thermal lesions by high intensity focused ultrasound," Ultrasound Med Biol. 39, 439-448, (2013). https://doi.org/10.1016/j.ultrasmedbio.2012.10.002
  14. U. Kang, R. Kim, Food Chemistry (Bomungoag, Busan, 2008), pp. 108-109.
  15. I. M. Hallaj, R. O. Cleveland, "FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound," J. Acoust. Soc. Am. 105, 7-12, (1999). https://doi.org/10.1121/1.426776
  16. I. M. Hallaj, R. O. Cleveland, K. Hynynen, "Simulations of the thermo-acoustic lens effect during focused ultrasound surgery," J. Acoust. Soc. Am. 109, 2245-2253, (2001). https://doi.org/10.1121/1.1360239
  17. J. Huang, R. G. Holt, R. O. Cleveland, and R. A. Roy, "Experimental validation of a tractable numerical model for focused ultrasound heating in flow-through tissue phantoms," J. Acoust. Soc. Am. 116, 2451-2458, (2004). https://doi.org/10.1121/1.1787124
  18. J. L. Drewniak and F. Dunn, "On the equivalence of pulsed and continuous ultrasound in producing temperature elevations resulting from absorption," J. Acoust. Soc. Jpn. E13, l15-120, (1992).
  19. Y. Saito, T. Ishizeki, T. Tsuchiya and N. Endoh, "Numerical analysis of temperature rise in tissue using ultrasound," J. Appl. Phys. 44, 4600-4601, (2005). https://doi.org/10.1143/JJAP.44.4600
  20. H. Inoue, K. I. Carnes, F. Dunn, "Absorption of ultrasound by Normal and Pathological Human Gonadal Tissues in vitro," Jpn. J. Med. 20, 349-355, (1993).
  21. H. Inoue, F. Taikoku, "A fundamental study on simulation of temperature-distribution by absorption" (in Japanese), Nihonronbun, l057-1058, (2002).
  22. H. Inoue, F. Yoshida, "A fundamental study on simulation of propagation of ultrasound and temperature-distribution by absorption," IEICE technical report. EMD 101, 13-16, (2002).
  23. C. Yamaya, H. Inoue, "Behavior of propagation and heating due to absorption of ultrasound in medium," Jpn. J. Appl. Phys. 45, 4429-4434, (2006). https://doi.org/10.1143/JJAP.45.4429
  24. T. Uno, Finite Difference Time Domain Method for Electromagnetic Field and Antenna Analyses (Corona, Tokyo, 1998), pp. 10-20.
  25. T. Kamakura, Fundamentals of Nonlinear Acoustics (Aichishuppan, Tokyo, 1996), pp. 61-100.
  26. H. Ping, "Acoustic attenuation estimation for soft tissue from ultrasound echo envelope peaks," IEEE Transactions on Ultrasonics. Ferroelectrics and Frequency Control. 36, 197-203, (1989). https://doi.org/10.1109/58.19151

Cited by

  1. Estimation of thermal distribution in tissue-mimicking phantom made of carrageenan gel vol.54, pp.7S1, 2015, https://doi.org/10.7567/JJAP.54.07HF23
  2. Tissue Mimicking Phantom for Visualization of Temperature Elevation Caused by Ultrasound vol.33, pp.5, 2014, https://doi.org/10.7776/ASK.2014.33.5.291