DOI QR코드

DOI QR Code

입수 충격 수중 순간 소음에 대한 실험적 연구

Experimental Study on Underwater Transient Noise Generated by Water-Entry Impact

  • 정영철 (서울대학교 조선해양공학과) ;
  • 성우제 (서울대학교 조선해양공학과) ;
  • 이근화 (서울대학교 해양시스템공학연구소) ;
  • 김형록 (국방과학연구소 제6기술연구본부)
  • 투고 : 2013.07.01
  • 심사 : 2013.08.28
  • 발행 : 2014.01.31

초록

본 연구에서는 입수 충격에 의한 수중 순간 소음을 연구하기 위해, 황해에서 발사대를 이용하여 해상 실험을 진행하였다. 해상시험선인 청해호 우현상에서 발사대를 이용하여 실린더 몸체를 수직으로 발사하였으며, 이때 발생하는 소음을 하이드로폰으로 측정하였다. 실험에서는 원통형, 원뿔형, 반구형 두부 형상을 가진 3가지 종류의 실린더 몸체가 사용되었다. 측정된 신호는 시간적으로 확연하게 구분되어 3단계로 전시되었다 : (1) 초기 충돌 및 물체 진동단계, (2) 개방 공동 유동 단계, (3) 공동 붕괴 및 거품 진동 단계. 대부분의 경우, 거품 진동 단계의 파형이 초기 충돌 및 물체 진동 단계에 비해 우세하게 나타났다. 공동이 붕괴되기 시작하는 핀치 오프 시간은 0.18 ~ 0.2 s에 발생하였으며, 평균 거품 지속 시간은 0.9 ~ 1.3 s로 지속되었다. 입수 충격 소음은 100 Hz 이하의 대역에서 에너지가 집중되어 있었으며, 생성되는 소음은 두부 형상, 물체 질량, 발사 속도에 의해 영향을 받았다. 결과적으로, 거품 주파수에서 에너지 스펙트럼 밀도의 크기는 원통형, 원뿔형, 반구형 순으로 나타났으며, 동일 입수체에 대해서는 초기 에너지가 클수록 거품 주파수에서 에너지 스펙트럼 밀도가 크게 나타났다. 최종적으로, 버블이 폭발하는 물리적 현상을 기반으로 모의된 신호와 계측 값간 비교 결과 만족스러운 결론을 얻을 수 있었다.

To study the water-entry impact noise, on-board experiment using a small launcher firing various objects was performed in the Yellow Sea. As the launcher fires a cylindrical object from the ship vertically, generated noise is measured with a hydrophone on the starboard of Chung-hae, Marine surveyor. Three types of cylindrical objects, which have noses of flat-faced, conical, and hemisphere, were used during the experiment. The measured noise exhibits a time-dependency which can be divided into three phases: (1) initial impact phase, (2) open cavity flow phase, (3) cavity collapse and bubble oscillation phase. In most cases, the waveform of bubble oscillation phase is dominant rather than that of initial impact phase. Pinch-off time, where a cavity begins to collapse, occurs at 0.18 ~ 0.2 second and the average lasting time of bubble was 0.9 ~ 1.3 second. The energy of water-entry impact noise is focused in the frequency region lower than 100 Hz, and the generated noise is influenced by the nose shapes, object mass, and launching velocity. As a result, energy spectral density on the bubble frequency is higher in the order of flat-faced, conical, hemisphere nose, and the increase of initial energy raises the energy spectral density on the bubble frequency in the cylinder body of same shape. Finally, we compare the measurements with the simulated signals and spectrum based on the bubble explosion physics, and obtain satisfactory agreements between them.

키워드

참고문헌

  1. R. J. Urick, Ambient Noise in the Sea (Peninsula, Los Altos, 1986), chapter 7, pp. 1-19.
  2. R. A. Holler, "High altitude launch of ASW sonobuoys," U. S. Naval Air Dev. Cent. Rep. NADC-8155-30 (1981).
  3. T. von Karman, "The impact of seaplane floats during landing," NACA Technical Note, 321 (1929).
  4. H. Wagner, "Phenomena associated with impacts and sliding on liquid surfaces," Z. Angew. Math. Mech. 12, 193-235 (1932). https://doi.org/10.1002/zamm.19320120402
  5. M. Shiffman, R. Courant and D. C. Spencer, "The force of impact on a sphere striking a water surface," Appl. Math. Panel Rep. 42 IR AMG - NYU No. 105 (1945).
  6. S. L. Chuang, "Slamming of rigid wedge shaped bodies with various deadrise angles," DTRC Rep. 2268 (1966).
  7. A. M. Worthington, A Study of Splashes (Longmans Green and Company, London, 1908), pp 73-129.
  8. E. G. Richardson, "The impact of a solid on a liquid surface," Proc. Phys. Soc. 61, 352-367 (1948). https://doi.org/10.1088/0959-5309/61/4/308
  9. A. May, "Vertical entry of missiles into water," J. Appl. Phys. 23, 1362-1372 (1952). https://doi.org/10.1063/1.1702076
  10. G. Birkhoff and E. H. Zarantonello, Jets, Wakes, and Cavities (Academic Press, New York, 1957), pp. 64-256.
  11. J. W. Glasheen and T. A. McMahon, "Vertical water entry of disks at low froude numbers," Phys. Fluids 8, 2078-2083 (1996). https://doi.org/10.1063/1.869010
  12. V. Duclaux, F. Calle, C. Duez, C. Ybert, L. Bocquet and C. Clanet, "Dynamics of transient cavities," J. Fluid Mech. 591, 1-19 (2007).
  13. B. D. Uber and R. J. Fegan Jr, Acoustic Signatures Accompanying Low-velocity Water Entry, (Master's thesis, Naval Postgraduate School, 1973).
  14. F. E. Fox, W. C. Connolly, J. L. Hunter and R. L. Meister, "Model experiments on the acoustic signal from airdropped mines," Catholic Univ of America Washington DC, Rep. Nonr 894-00 (1952).
  15. J. W. Corbett and R. E. Lanou, "Analysis of mine-drop signatures for rise-time, amplitude, and frequency characteristics," ESL Technical Memorandum, Rep. Nonr 609 (1953).
  16. W. R. Hoover and V. C. D. Dawson, "Hydrodynamic pressure measurements of the vertical water entry of a sphere," Naval Ordnance Lab White Oak MD, Rep. NOLTR 66-70 (1966).
  17. L. Likhterov, "High-frequency acoustic noise emitted by initial impact of solid sphere falling onto liquid surface," Phys. Fluids 10, 321-323 (1998). https://doi.org/10.1063/1.869542
  18. UK Meteorological Office: The Beaufort Scale, http://www.metoffice.gov.uk/learning/library/publications/factsheets/, 2010.
  19. C. J. Huang and T. M. Tien, "Research of a solid object impacting on the water surface," PIERS Proceeding, Cambridge, USA, 846-849 (2010).
  20. G. J. Franz, "Splashes as sources of sound in liquids," J. Acoust. Soc. Am. 31, 1080-1096 (1959). https://doi.org/10.1121/1.1907831
  21. M. Minnaert, "On musical air-bubbles and the sounds of running water," Philos Mag. 16, 235-248 (1933). https://doi.org/10.1080/14786443309462277
  22. C. Devin Jr, "Survey of thermal, radiation, and viscous damping of pulsating air bubbles in water," J. Acoust. Soc. Am. 31, 1654-1667 (1959). https://doi.org/10.1121/1.1907675