DOI QR코드

DOI QR Code

Enzymatic Interesterification and Melting Characteristic for Asymmetric 1,2-Distearoyl-3-Oleoyl-rac-Glycerol Triacylglycerol Enriched Product

효소적 반응을 이용한 비대칭형 1,2-Distearoyl-3-Oleoyl-rac-Glycerol 혼합물의 생성 및 융점 특성

  • Kim, Jin Young (Dept. of Food Science and Technology, Chungnam National University) ;
  • Lee, Ki Teak (Dept. of Food Science and Technology, Chungnam National University)
  • Received : 2013.08.08
  • Accepted : 2013.12.31
  • Published : 2014.01.31

Abstract

Asymmetric 1,2-distearoyl-3-oleoyl-rac-glycerol (SSO) triacylglycerol (TAG) is used as a cocoa butter replacer (CBR). In this study, it was produced by lipase-catalyzed interesterification of fully hydrogenated soybean oil (FHSBO) and oleic ethyl ester (OEE) in a batch type reactor at $75^{\circ}C$, 250 rpm. Different molar ratios (FHSBO : OEE=1:1, 1:2 and 1:3, w/w) and various reaction times (1, 2, 3, 4, and 5 hr) were also tested. The optimized condition for SSO was a FHSBO : OEE molar ratio of =1:1 at reaction times of 2, 3, 4, and 5 hr. Enzymatic synthesis generated SSO/SOS, as well as the other TAGs (e.g., PSO/POS, SOO/OSO, SSS), ethyl esters, monoacylglycerol (MAG), and diacylglycerol (DAG). After scale-up, fractionation by solvent (methanol and acetone) fractionation and column chromatography was applied. To reduce ethyl esters, high-melting TAGs (e.g., SSS), and SOO/OSO in reactants, solvent fractionation was applied. Using a silica gel column (sample : silica gel=2:1, wt%), MAG and DAG were removed at $25^{\circ}C$. The major fatty acid composition of the final products (with a high SSO/SOS content) was palmitic acid (C16:0, 10.9~12.9 area%), stearic acid (C18:0, 52.2~54.9 area%), and oleic acid (C18:1, 34.2~35.5 area%). In reversed-phase HPLC analysis, the major TAG species of the final product (FHSBO : OEE=1:1, 2 hr) were SSO/SOS (82.31 area%) and PSO/POS (14.51 area%). Based on the $[SS]^+$ : $[SO]^+$ ratio obtained by RP-HPLC/APCI-MS, the final product had a higher SSO (AAB type TAG) content than cocoa butter (CB). The solid fat index (SFI) of CB and the final product obtained were similar with a narrow melting point range around ~32 to $35^{\circ}C$.

본 연구는 대두극도경화유(fully hydrogenated soybean oil, FHSBO)와 oleic ethyl ester를 사용하여 코코아버터 대체유지(CBR)로서 사용가능한 비대칭 유지를 개발하고자 하였다. 생산된 비대칭 유지는 위치별 지방산 및 TAG 조성분석, 흡열 및 발열곡선 분석을 수행하여 특성연구를 진행하였으며, TAG 이성질체 분석과 solid fat index(SFI), slip melting point 측정 결과는 코코아버터와 비교 분석하였다. 위치별 지방산 및 TAG 조성 분석 결과, 최종적으로 생산된 비대칭 유지의 주요 TAG 조성은 SSO/SOS, PSO/POS로 분석되었으며 sn-2 위치의 지방산은 62.5~68.4 area%의 범위로 주로 stearic acid로 구성되어 있음을 확인하였다. 이는 최종 생성물의 TAG 조성이 SOS, POS보다 주로 SSO, PSO와 같은 비대칭형 TAG로 구성되어 있음을 나타내는 결과인 것으로 생각된다. 또한 RP-HPLC/APCI-MS를 이용하여 SSO와 SOS의 TAG 이성질체 분석한 결과, $[SS]^+$ : $[SO]^+$의 비율이 0.54로 분석된 최종 생성물은 0.37로 분석된 코코아버터에 비하여 비대칭형 TAG인 SSO의 함량이 높으나, 대칭형 TAG인 SOS와 함께 공존하여 존재하는 것으로 나타났다. 코코아버터와 최종 생성물 모두 $30{\sim}35^{\circ}C$의 온도 구간에서 급격한 흡열곡선을 나타내어 코코아버터 대체유지로서의 특성을 가지고 있었으나, 최종 생성물은 코코아버터보다 조금 높은 SFI와 slip melting point를 가지는 것으로 분석되었다. 이는 최종 생성물의 stearic acid 함량이 코코아버터보다 높은 것에 기인된 것으로 판단된다.

Keywords

References

  1. Lipp M, Simoneau C, Ulberth F, Anklam E, Crews C, Brereton P, de Greyt W, Schwack W, Wiedmaier C. 2001. Composition of genuine cocoa butter and cocoa butter equivalents. J Food Compos Anal 14: 399-408. https://doi.org/10.1006/jfca.2000.0984
  2. Lonchampt P, Hartel RW. 2004. Fat bloom in chocolate and compound coatings. Eur J Lipid Sci Technol 106: 241-274. https://doi.org/10.1002/ejlt.200400938
  3. Amoye S. 2006. Cocoa sourcing, world economics and supply. The Manufacturing Confectioner 86: 81-85.
  4. Lipp M, Anklam E. 1998. Review of cocoa butter and alternative fats for use in chocolate-part A. Compositional data. Food Chem 62: 73-97. https://doi.org/10.1016/S0308-8146(97)00160-X
  5. Ciftci ON, Fadiloglu S, Kowalski B, Gogus F. 2008. Synthesis of cocoa butter triacylglycerols using a model acidolysis system. Grasas Y Aceites 59: 316-320.
  6. Bootello MA, Hartel RW, Levin M, Martinez-blanes JM, Real C, Garces R, Martinez-force E, Salas JJ. 2013. Studies of isothermal crystallisation kinetics of sunflower hard stearin-based confectionery fats. Food Chem 139: 184-195. https://doi.org/10.1016/j.foodchem.2012.11.141
  7. Abigor RD, Marmer WN, Foglia TA, Jones KC, DiCiccio RJ, Ashby R, Uadia PO. 2003. Production of cocoa butter- like fats by the lipase-catalyzed interesterification of palm oil and hydrogenated soybean oil. J Am Oil Chem Soc 80: 1193-1196. https://doi.org/10.1007/s11746-003-0841-7
  8. Chong CN, Hoh YM, Wang CW. 1992. Fractionation procedures for obtaining cocoa butter-like fat from enzymatically interesterified palm olein. J Am Oil Chem Soc 69: 137-140. https://doi.org/10.1007/BF02540563
  9. Baliga BP, Shitole AD. 1981. Cocoa butter substitutes from mango fat. J Am Oil Chem Soc 58: 110-114. https://doi.org/10.1007/BF02672193
  10. Kim JY, Lee KT. 2009. Characterization of scaled-up lowtrans shortening from rice bran oil and high oleic sunflower seed oil with batch type reactor. J Korean Soc Food Sci Nutr 38: 338-345. https://doi.org/10.3746/jkfn.2009.38.3.338
  11. Lee KT, Akoh CC. 1996. Immobilized lipase-catalyzed production of structured lipids with eicosapentaenoic acid at specific positions. J Am Oil Chem Soc 73: 611-615. https://doi.org/10.1007/BF02518116
  12. Fomuso LB, Akoh CC. 2002. Lipase-catalyzed acidolysis of olive oil and caprylic acid in a bench-scale packed bed bioreactor. Food Res Int 35: 15-21. https://doi.org/10.1016/S0963-9969(00)00158-7
  13. Moon JH, Hwang YI, Lee KT. 2009. Study on the positional distribution of fatty acids, and triacylglycerol separation, of seed oils. Korean J Food Preserv 16: 726-733.
  14. Mottram HR, Woodbury SE, Evershed RP. 1997. Identification of triacylglycerol positional isomers present in vegetable oils by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry. Rapid Commun Mass Spectrom 11: 1240-1252. https://doi.org/10.1002/(SICI)1097-0231(199708)11:12<1240::AID-RCM990>3.0.CO;2-5
  15. Md.Ali AR, Dimick PS. 1994. Thermal analysis of palm mid-fraction, cocoa butter and milk fat blends by differential scanning calorimetry. J Am Oil Chem Soc 71: 299-302. https://doi.org/10.1007/BF02638056
  16. AOCS. 1990. Official Methods and Recommended Practices. 4th ed. American Oil Chemists' Society, Champaign, IL, USA. Cc 4-25.
  17. Laszlo JA, Compton DL, Vermillion KE. 2008. Acyl migration kinetics of vegetable oil 1,2-diacylglycerols. J Am Oil Chem Soc 85: 307-312. https://doi.org/10.1007/s11746-008-1202-5
  18. Xu X. 2000. Production of specific-structured triacylglycerols by lipase-catalyzed reactions: a review. Eur J Lipid Sci Technol 102: 287-303. https://doi.org/10.1002/(SICI)1438-9312(200004)102:4<287::AID-EJLT287>3.0.CO;2-Q
  19. Mottram HR, Evershed RP. 1996. Structure analysis of triacylglycerol positional isomers using atmospheric pressure chemical ionisation mass spectrometry. Tetrahedron Lett 37: 8593-8596. https://doi.org/10.1016/0040-4039(96)01964-8
  20. Mills BL, van de Voort FR. 1981. Determination of solid fat index of fats and oils using the anton paar density meter. J Am Oil Chem Soc 58: 618-621. https://doi.org/10.1007/BF02672377
  21. Quast LB, Luccas V, Ribeiro APB, Cardoso LP, Kieckbusch TG. 2013. Physical properties of tempered mixtures of cocoa butter, CBR and CBS fats. Int J Food Sci Technol 48:1579-1588. https://doi.org/10.1111/ijfs.12127

Cited by

  1. Comparison of Hydrolysis from In Vitro Digestion Using Symmetric and Asymmetric Triacylglycerol Compounds by Enzymatic Interesterification vol.43, pp.6, 2014, https://doi.org/10.3746/jkfn.2014.43.6.842
  2. Melting, Crystallization, and In Vitro Digestion Properties of Fats Containing Stearoyl-Rich Triacylglycerols vol.27, pp.1, 2014, https://doi.org/10.3390/molecules27010191