DOI QR코드

DOI QR Code

주기적인 하폭 변화 수로에서 사주의 거동에 관한 수치실험

Numerical Experiments of the Behavior of Bars in the Channels with Periodic Variable Width

  • 장창래 (한국교통대학교 토목공학과)
  • Jang, Chang-Lae (Dept. of Civil Engineering, Korea National University of Transportation)
  • 투고 : 2013.08.27
  • 심사 : 2013.11.14
  • 발행 : 2014.01.31

초록

본 연구에서는 하폭의 주기적인 변화에 의하여 교호사주와 복렬사주가 발생하는 수리학적 조건에서 주기적인 하폭변화에 의한 강제사주의 형성과정과 거동 특성을 2차원 수치모형을 이용하여 파악하였다. 하폭변화의 진폭이 크면, 사주의 파장은 짧아지고, 사주의 이동성은 크게 감소하였다. 교호사주가 발생할 수 있는 영역에서는 하폭의 변화에 대하여 강제효과가 크게 작용하며, 복렬사주가 발생할 영역에서는 하폭의 변화에 의한 강제효과가 상대적으로 작은 특성을 보여주었다. 복렬사주가 발달한 조건에서는 하도변화의 진폭 대 평균하폭의 비인 무차원 진폭이 0.25로 증가할 때 사주의 이동속도는 증가하지만, 이보다 크면 사주의 이동속도가 급격하게 감소하였다. 교호사주가 발생하는 조건에서는 사주의 파장 대하폭 변화의 파장 비인 무차원 사주의 파장이 증가할수록 사주의 이동속도가 증가하지만, 무차원 사주의 파장이 1에 가까운 경우에 사주의 이동속도가 급격하게 감소하였다. 즉, 사주의 파장과 하폭의 파장이 일치할 때, 하폭변화에 의한 강제효과가 강하게 작용하여 사주가 압박되기 때문이다.

This study examines the processes and the behaviour characteristics of forcing bars in channels with periodic variable width in the alternate and braided regimes by using a two dimensional numerical model. The wavelength and the migration speed decrease as the amplitude of variable width increases. The forcing effects of the width variation on the alternate bars is stronger than those on the braided bars. The bar migration speed increases as the dimensionless amplitude in the braided regime is 0.25. However, the migration speed is abruptly decreased as the amplitude in it was larger than 0.25. The bar migration speed increases in the alternates bar regime as the dimensionless wavelength increases. However, the migration speed decreases around 1 of the wavelength. As the bar wavelength and the variable width wavelength coincide, the bars don't migrate downstream by the strong forcing effects on the bars due to the suppression by the width variation.

키워드

참고문헌

  1. Bitter, L. (1994). River bed response to channel width variation. Master thesis, University of Illinois.
  2. Crosato, A., and Mosselman, E. (2009). "Simple physicsbased predictor for the number of river bars and the transition between meandering and braiding." Water Resour. Res., Vol. 45, W03424, doi:10.1029/2008WR007242.
  3. Defina, A. (2003). "Numerical experiments on bar growth." Water Resour. Res., Vol. 39, No. 4, 1092, doi:10.1029/2002WR001455.
  4. Engelund, F. (1974). "Flow and bed topography in channel beds." J. Hydr. Div., ASCE, Vol. 100, No. 11, pp. 1631-1648.
  5. Garcia, M., and Nino, Y. (1993). "Dynamics of sediment bars in straight and meandering channels: Experiments on the resonance phenomenon." J. Hydraul. Res., Vol. 31, No. 6, pp. 739-761. https://doi.org/10.1080/00221689309498815
  6. Jang, C.-L. (2013). "Dynamic characteristics of multiple bars in the channels with erodible banks." Journal of Korea Water Resoources Association, Vol. 46, No. 1, pp. 25-34. https://doi.org/10.3741/JKWRA.2013.46.1.25
  7. Jang, C.-L., and Shimizu, Y. (2005). "Numerical simulation of relatively wide, shallow channels with erodible banks." J. Hydraul. Eng., ASCE, Vol. 131, No. 7, pp. 565-575. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(565)
  8. Kishi, T., and Kuroki, M. (1973). "Bed form and flow resistance in alluvial rivers (I)." Research Report of Faculty of Engineering, Hokkaido Univ., Vol. 67, pp. 1-23.
  9. Kuroki, M., and Kish, T. (1984). "Regime criteria on bars and braids in alluvial straight channels." Proc. JSCE, Vol. 342, pp. 87-96. (in Japanese)
  10. Langbein, L.B., and Leopold, M. G.(1966). "River meanders and the theory of minimum variance." U.S. Geol. Surv. Prof. Pap., 442-H.
  11. Lanzoni, S. (2000). "Experiments on bar formation in a straight flume 1. Uniform sediment." Water Resour. Res., Vol. 36, pp. 3337-3349, doi:10.1029/2000WR900160.
  12. Meyer-Peter, E., and Muller, R. (1948). "Formulas for bed-load transport." Proc. 2nd Congress, IAHR, Stockholm. Sweden. Vol. 2, No. 2, pp. 39-64.
  13. Parker, G. (1976). "On the cause and characteristic scales of meandering and braiding in rivers." J. Fluid Mech., Vol. 76, No. 3, pp. 457-479. https://doi.org/10.1017/S0022112076000748
  14. Predsoe, J. (1978). "Meandering and braiding of rivers." J. Fluid Mech, Vol. 84, No. 4, pp. 609-624. https://doi.org/10.1017/S0022112078000373
  15. Repetto, R., and Tubino, M. (2001). "Topographic expressions of bars in channels with variable width." Phys. Chem. Earth, Part B, Vol. 26, pp. 71-71. https://doi.org/10.1016/S1464-1909(01)85017-6
  16. Repetto, R., Tubino, M., and Paola, C. (2002). "Planimetric instability of channels width variable width." J. Fluid Mech, Vol. 457, pp. 79-109.
  17. Seminara, G., and Tubino, M. (1989). Alternate bars and meandering: Free, froced and mixed interactions, in River meandering, Water Resour. Monogr:ser., Vol. 12, edited by Ikeda, S., and Parker, G., pp. 267-320, AGU, Washington, D.C.
  18. Tubino, M., and Seminara, G. (1990). "Free-forced interactions in developing meanders and suppression of free bars." J. Fluid Mech, Vol. 214, pp. 131-159. https://doi.org/10.1017/S0022112090000088
  19. Watanabe, A., Fukuoka, S., Yasutake, Y., and Kawakuchi, H. (2001). "Groin arrangements made of natural willows for reducing bed deformation in a curved channel." Advances in River Engineering, Vol. 7, pp. 285-290.
  20. Whiting, P. J., and Dietrich, W. (1993). " Experimental constraints on bar migration through bends: Implications for meander wavelength selection."Water Resour. Res., Vol. 29, No. 4, pp. 1091-1102. https://doi.org/10.1029/92WR02356
  21. Wu, F. C., and Yeh, M. G. (2005). "Forced bars induced by variations of channel width: Implications for incipient bifurcation." J. Geophys. Res., Vol. 110, F02009, doi:10.1029/2004JF000160.
  22. Wu, F.C., Yeh, T.H., and Chen, Y.C. (2011). "Quantifying the forcing effect of channel width variations on free bars: Morphodynamic modeling based on characteristic dissipative Galerkin scheme." J. Geophys. Res., Vol. 116, F0302, doi:10.1029/2010JF00194.

피인용 문헌

  1. Depth Averaged Numerical Model for Sediment Transport by Transcritical Flows vol.47, pp.11, 2014, https://doi.org/10.3741/JKWRA.2014.47.11.1061