DOI QR코드

DOI QR Code

초고속 클라우드 비디오 서비스 실현을 위한 SDN 기반의 다중 무선접속 기술 제어에 관한 연구

A Study of Development for High-speed Cloud Video Service using SDN based Multi Radio Access Technology Control Methods

  • 김동하 (경희대학교 컴퓨터공학과) ;
  • 이성원 (경희대학교 컴퓨터공학과)
  • Kim, Dongha (Dept. of Computer Engineering, Kyung Hee Univ.) ;
  • Lee, Sungwon (Dept. of Computer Engineering, Kyung Hee Univ.)
  • 투고 : 2013.11.15
  • 심사 : 2014.01.20
  • 발행 : 2014.01.30

초록

본 논문은 최근 이동통신 네트워크에서 폭발적으로 증가하고 있는 비디오 트래픽이 야기한 문제와 요구사항의 해결책으로써, SDN(Software Defined Network)을 기반으로 하는 다중 무선 접속 기술(Multiple Radio Access Technology)의 제어 기법을 제안하고 그 성능을 자체 구축한 테스트베드를 통하여 평가한다. 이를 위하여, 먼저 사업자 입장에서 3rd-party의 비디오 트래픽을 사업자망으로부터 우회(off-loading)시키는 방안의 필요성과, 사용자에게 저비용으로 고속의 대용량 비디오 콘텐츠 서비스를 제공하는 방안에 대하여 논의한다. 또한 성능평가를 위한 테스트베드는 OpenStack 클라우드 및 SDN 기반으로 구축 하였다. 이를 통해, OpenFlow와 Open Switch를 이용하여 2개의 2.4GHz 무선 랜 링크와 3개의 5GHz 무선 랜 링크가 동시에 하나의 서비스를 지원하도록 함으로서 820 Mbps 급의 초고속 클라우드 비디오 서비스를 위한 전송 속도를 실현하였다.

This paper proposed controlling methods for SDN(Software Defined Network) based multiple radio access technology as the solutions of following two issues which were mainly occurred by explosive increasing of video traffic. The first one is a requirement for traffic off-loading caused by 3rd-party video service providers from the mobile network operator's viewpoint. The other one is a provision of high-speed video contents transmission services with low price. Furthermore, the performance evaluation was also conducted on the real test-bed which is composed of OpenStack cloud and SDN technology such as OpenFlow and Open vSwitch. A virtual machine running on the OpenStack provide a video service and the terminal which is able to use multiple radio access technology supports two 2.4GHz WLANs(Wireless Local Area Network) and three 5GHz WLANs, concurrently. Finally, we can get 820Mbps of the maximum transmission speed by using that five WLAN links for the single service at the same time.

키워드

참고문헌

  1. Cisco White Paper, Cisco Visual Networking Index: Forecast and Methodology, 2012-2017, May 2013.
  2. Ericsson, Ericsson Mobility Report, accessed Jan. 15, http://www. ericsson.com/res/docs/2013/ericsson-mobility-report-june-2013.pdf.
  3. Demestichas, P., Georgakopoulos, A., Karvounas, D., Tsagkaris, K., Stavroulaki, V., Lu, J., Xiong, C., and Yao, J., 5G on the Horizon: Key Challenges for the Radio-Access Network, IEEE Vehicular Technology Magazine, 8(3), pp.47-53, Sep. 2013. https://doi.org/10.1109/MVT.2013.2269187
  4. Gustafsson, E., and Jonsson, A., Always best connected, IEEE Wireless Communications, 10(1), pp.49-55, Feb. 2003. https://doi.org/10.1109/MWC.2003.1182111
  5. Kellokoski, J., Koskinen, J., Nyrhinen, R., and Hamalainen, T., Efficient Handovers for Machine-to-Machine Communications Between IEEE 802.11 and 3GPP Evolved Packed Core Networks, Green Computing and Communications (GreenCom) 2012. IEEE International Conference on, pp.722-725, Nov. 2012.
  6. Kellokoski, J., Koskinen, J., and Hamalainen, T., Context and location aware always-best-connected concept for heterogeneous network, Wireless Days (WD). 2012 IFIP, pp. 1-3, Nov. 2012.
  7. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J., Shenker S., and Turner, J., OpenFlow: enabling innovation in campus networks, ACM SIGCOMM Computer Communication Review, 38(2), pp.69-74, Apr. 2008.
  8. Pfaff, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., and Shenker, S., Extending Networking into the Virtualization Layer, Hotnets, Oct. 2009.
  9. OpenStack official web site, accessed Jan. 15, http://www.openstack. org/.
  10. Kim D., Yi G., and Lee S., A Study on the Multiple Network Interfaces Control using Open vSwitch and OpenFlow, Korea Computer Congress 2011 (KCC 2012), 40(1), pp.921-923, Jun. 2013.
  11. Ford, A., Raiciu, C., Handley, M., Barre, S., and Iyengar, J., Architectural guidelines for multipath TCP development, RFC 6182, Mar. 2011.
  12. Stewart, R., Stream control transmission protocol, RFC 4906, Jun. 2007.
  13. Casado, M., Freedman, M. J., Pettit, J., Luo, J., McKeown, N., and Shenker, S., Ethane: Taking control of the enterprise. ACM SIGCOMM Computer Communication Review, 37(4), pp.1-12, Aug. 2007. https://doi.org/10.1145/1282427.1282382
  14. Yoon, B., Lee, B., and Pitt, D., Future Networking Technology of SDN, Electronics and Telecommunications Trends, 27(2), 2012.
  15. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker, S. NOX: towards an operating system for networks, ACM SIGCOMM Computer Communication Review, 38(3), pp.105-110, Jul. 2008. https://doi.org/10.1145/1384609.1384625
  16. Floodlight project official web site, accessed Jan. 15, http://www. floodlightproject.org/floodlight/.
  17. Open Networking Foundation, OpenFlow Switch Specification, accessed Jan. 15, https://www.opennetworking.org/images/stories/downloads/ sdn-resources/ onf-specifications/openflow/openflow- spec-v1.2. pdf.
  18. Astely, D., Dahlman, E., Fodor, G., Parkvall, S., and Sachs, J., LTE release 12 and beyond, IEEE Communications Magazine, 51(7), pp.154-160, Jul. 2013.
  19. Hostapd official web site, accessed Jan. 15, http://hostap.epitest.fi/hostapd/.
  20. Iperf official web site, Iperf: The TCP/UDP bandwidth measurement tool, accessed Jan. 15, http://iperf.fr/.
  21. Ong, E. H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., and Nihtila, T., IEEE 802.11 ac: Enhancements for very high throughput WLANs. Personal Indoor and Mobile Radio Communications (PIMRC). 2011 IEEE 22nd International Symposium on, pp.849-853, Sep. 2011.