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Abstract

When the loss of samples appears under repeated surveys, new samples can often
replace missing values. Estimators using response probability can be considered under
repeated surveys on two occasions where new samples are selected instead of missing
data on the second occasion. We propose a new estimator that uses both respondents
and new samples on the second occasion. It is considered for the simulation setting that
missing values can happen at the second occasion and are replaced by new samples.
We can see that the proposed estimator is more efficient than that using a weighting
adjustment method for respondents at the second occasion.
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1. Introduction

In many repeated surveys, the samples which are selected from a sampling design are
continuously surveyed for a given period. The loss of samples, however, often happens under
repeated surveys during a given term because of moving, nonresponse, refusal and so on. We
can replace the missing values with the values of new samples. In general, the estimation of
a population parameter requires the revision of design weight by the reciprocal of response
probability under a given period (Lohr, 1999). Thus, it is necessary to consider response
probability in repeated surveys.

In this paper, we consider repeated surveys where the same samples are to be surveyed
on two occasions. It is assumed that all sample units respond at the first occasion but some
units can be lost at the second occasion. Unit nonresponses at the second occasion are
assumed to be replaced by new samples. A new estimator combining an estimator based
on samples which response on the two occasions and an estimator based on new samples
instead of missing data on the second occasion is proposed to estimate the population mean.
In the new estimator, the response probability differs at each observation. Different response
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probability has been considered in many cases of sample survey. For example, under the
assumption that the response probability is constant in the same cell but different among
cells, Little (1986) provided several methods to divide the cells. Eltinge and Yansaneh (1997)
discussed diagnostics for the formation of the cells. Rosenbaum (1987), Robins et al. (1994)
and Lipsitz et al. (1999) have used the logistic model to represent the different response
probability in the non-imputation context. Park and Park (2013) researched imputation
method using response probability.

We first prove the unbiasedness and the efficiency of the proposed estimator under the
assumption of known response probability. We also consider the estimation of response prob-
ability because we cannot know response probability previously. We compare the proposed
estimator using estimated response probability with a conventional estimator and show that
the former has smaller variance in simulation study. This paper is organized as follows. In
Section 2, the estimator using the response probability is studied. In Section 3, results from
a limited simulation study are presented.

2. An estimator using response probability

We assume that the finite population of size N is indexed from 1 to N at each occasion. Let
the population parameter be the mean Ȳt = N−1

∑N
i=1 yti, where yti is the study variable

of unit i on the t-th occasion for t = 1, 2. We assume that samples are selected once using
simple random sampling and the same samples are used on both occasions. It is assumed
that when missing values appear at the second occasion because of nonresponse, moving,
refusal and so on, they are replaced by new samples.

In this section we consider the case that the response probability of each observation at the
second occasion under repeated surveys is not the same. First, define the response indicator
function at the second occasion as

Ri =

{
1, if unit i responds
0, otherwise

for i = 1, . . . , n and n is the sample size. Let πi = P (Ri = 1) be the response probability of
unit i surveyed at the second occasion. We assume that the response is ignorable such that
πi depends on an auxiliary variable but not on y2i.

Let us introduce some notations for the estimators at two occasions. First, let

ȳ1 =

n∑
i=1

wiy1i

be the estimator at the first occasion with wi = n−1. Note that wi can be different from n−1

for another setting. Generally, if new samples aren’t selected, the weight for a respondent
at the second occasion becomes wiπ

−1
i and the estimator at the second occasion is

ȳ2m =

n∑
i=1

wiπ
−1
i Riy2i,

which satisfies unbiasedness (Lohr, 1999). Define

ȳ2u =

n∑
i=1

wi(1− πi)−1(1−Ri)y
∗
2i
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as an estimator based on the new samples y∗2i at the second occasion and

ȳ1m =

n∑
i=1

wiπ
−1
i Riy1i

as an estimator based on the samples at the first occasion which respond at the second
occasion.

Considering new samples instead of missing data on the second occasion, we propose a
new estimator using the response probability

ȳ′2 = φ2ȳ2u + (1− φ2)ȳ′2m, (2.1)

where ȳ′2m = r̂ȳ1 and r̂ = ȳ−11mȳ2m. The constant φ2 is selected to minimize V (ȳ′2), such that

φ2 = [V (ȳ2u) + V (ȳ′2m)− 2Cov(ȳ2u, ȳ
′
2m)]−1[V (ȳ′2m)− Cov(ȳ2u, ȳ

′
2m)].

In the following theorem, we derive the asymptotic properties of the estimator ȳ′2.

Theorem 2.1 Let us assume a sequence of finite populations with finite second moment of
yki as defined in Isaki and Fuller (1982). Assume also that the response mechanism satisfies
the condition that

πi > K (2.2)

for some nonnegative constant K and

P (Ri = 1, Rj = 1) = P (Ri = 1)P (Rj = 1) (2.3)

for all i and j with i 6= j. Then,

E(ȳ′2) = Ȳ2 + o(n−1/2) (2.4)

and

V (ȳ′2)=

[
2S2

2

n
+E1+E2+2E3

]−1 [(
S2
2

n

)2

+
S2
2

n
(E1 + E2)+E1E2−E2

3

]
+o(n−1), (2.5)

where r = Ȳ −11 Ȳ2, E1 = E[
∑n

i=1 w
2
i (π−1i −1)−1y∗22i )], E2 = E[

∑n
i=1 w

2
i (π−1i −1)(y2i−ry1i)2],

E3 = E[
∑n

i=1 w
2
i y
∗
2i(y2i − ry1i)] and S2

2 = (N − 1)−1
∑N

i=1(y2i − Ȳ2)2.

Proof. Note that it follows from (2.2) and (2.3) that

E[(ȳ1m − Ȳ1)2] = V

(
n∑

i=1

wiy1i

)
+ E

(
n∑

i=1

w2
i (π−1i − 1)y21i

)
= O(n−1)

and

E[(ȳ2m − Ȳ2)2] = V

(
n∑

i=1

wiy2i

)
+ E

(
n∑

i=1

w2
i (π−1i − 1)y22i

)
= O(n−1).

Then, using Corollary 5.1.1.1 of Fuller (1996), we obtain that

ȳ1m − Ȳ1 = OP (n−1/2)
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and

ȳ2m − Ȳ2 = OP (n−1/2).

Then, by Taylor expansion, we obtain that

r̂ = r + Ȳ −11 [(ȳ2m − Ȳ2)− r(ȳ1m − Ȳ1)] + op(n−1/2).

Write ȳ′2m as

ȳ′2m = (r̂ − r)(ȳ1 − Ȳ1) + r̂Ȳ1 + r(ȳ1 − Ȳ1) = ȳ2m − r(ȳ1m − ȳ1) + op(n−1/2),

and we obtain (2.4) by unbiasedness of ȳ2u.
Observe that

V (ȳ′2) = [V (ȳ2u) + V (ȳ′2m)− 2Cov(ȳ2u, ȳ
′
2m)]−1[V (ȳ2u)V (ȳ′2m)− Cov(ȳ2u, ȳ

′
2m)2],

which follows the definition of φ2. First, from (2.3), we have that

V (ȳ2u) = n−1S2
2 + E1. (2.6)

In the second place, by (2.2) and (2.3),

V (ȳ′2m) = n−1S2
2 + E2 + o(n−1). (2.7)

Again by (2.2) and (2.3),

Cov(ȳ2u, ȳ
′
2m) = −E3 + o(n−1). (2.8)

Finally, from (2.6), (2.7) and (2.8), we obtain (2.5). �

So far, we have assumed that πi and φ2 are all known. Because we cannot know them in
realistic case, we must estimate πi and φ2. For the case of different response probability, we
use the logistic regression model

πi = exp(α0 + α1xi)/[1 + exp(α0 + α1xi)], (2.9)

where xi is the value of the auxiliary variable of unit i. The maximum likelihood parameter
estimates α̂0, α̂1of the logistic regression model are computed iteratively using the Newton-
Raphson method. The estimated response probability is

π̂i = exp(α̂0 + α̂1xi)/[1 + exp(α̂0 + α̂1xi)].

We also consider variance and covariance estimators for ȳ2u and ȳ′2m to estimate φ2. The
jackknife variance estimator of V (ȳ2u) is

V̂ (ȳ2u) =

n∑
k=1

n−1(n− 1)(ȳ
(k)
2u − ȳ2u)2,

where ȳ
(k)
2u =

∑n
i 6=k(n − 1)−1nwi(1 − π̂(k)

i )−1(1 − Ri)y
∗
2i and π̂

(k)
i is the estimated π̂i after

the deletion of the k-th observation. The jackknife variance estimator of V (ȳ′2m) is

V̂ (ȳ′2m) =

n∑
k=1

n−1(n− 1)(ȳ
′(k)
2m − ȳ′2m)2,
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where ȳ
′(k)
2m = (ȳ

(k)
2m/ȳ

(k)
1m)ȳ

(k)
1 , ȳ

(k)
2m =

∑n
i 6=k(n − 1)−1nwi(π̂

(k)
i )−1Riy2i, ȳ

(k)
1m =

∑n
i 6=k(n −

1)−1nwi(π̂
(k)
i )−1Riy1i and ȳ

(k)
1 =

∑n
i6=k(n − 1)−1nwiy1i. The covariance of ȳ2u and ȳ′2m is

estimated by

Ĉ(ȳ2u, ȳ
′
2m) =

n∑
k=1

n−1(n− 1)(ȳ
(k)
2u − ȳ2u)(ȳ

′(k)
2m − ȳ′2m).

Then, the estimator of φ2 is given by

φ̂2 = [V̂ (ȳ2u) + V̂ (ȳ′2m)− 2Ĉ(ȳ2u, ȳ
′
2m)]−1[V̂ (ȳ′2m)− Ĉ(ȳ2u, ȳ

′
2m)].

Finally, we have the estimator (2.1) with π̂i and φ̂2 plugged in.

3. Simulation results

We provide the results of a limited simulation study performed to test the efficiency of
our estimator. In the simulation study, B = 1, 000 samples of size n = 100 were generated
by (

y1i
y2i

)
=

(
σ1 0
ρσ2 (1− ρ2)1/2σ2

)(
z1i
z2i

)
+

(
µ1

µ2

)
,

where zti ∼ iid N(0, 1) for i = 1, . . . , n and t = 1, 2 and σ1 = σ2 = 15, µ1 = µ2 = 15. The
correlation coefficient ρ of y1i and y2i has the values of 1, 0.9, 0.8 and 0.7. The parameters of
logistic regression model were assumed to be (α0, α1) = (1.5,−1.0), (−0.5, 1.0), (−1.0, 0.0)
and, thus, the overall response rates were respectively 0.73, 0.50, 0.27. The auxiliary variable
was assumed to be distributed as xi ∼ Uniform(0, 1). The maximum likelihood parameter
estimates α̂0, α̂1 of the logistic regression model are computed iteratively using the Newton-
Raphson method. Note that the missing data at the second occasion were replaced by new
samples.

Using B samples of (y1i, y2i, Ri, xi), i = 1, ..., n, we computed the empirical values of two
types of variances V (ȳ2m) and V (ȳ′2) and of two types of expectations E(ȳ2m) and E(ȳ′2),

where ȳ′2 is our proposed estimator using π̂i and φ̂2. Table 3.1 contains the information of the
simulated values for expectation and variance for the case of different response probability.
Two rows of each cell in Table 3.1 denote bias, MSE and SMSE of ȳ2m and ȳ′2, respectively,
for different values of (α0, α1) and correlation coefficient ρ. Here, the standardized MSE
(SMSE) is defined by MSE(ȳ′2)/MSE(ȳ2m).

Table 3.1 Bias, MSE, standardized MSE of ȳ2m and ȳ′2

(α0, α1)
ρ (1.5,−1.0) (−0.5, 1.0) (−1.0, 0.0)

Bias MSE SMSE Bias MSE SMSE Bias MSE SMSE

1.0
ȳ2m -0.074 2.987 1 -0.04 4.4 1 0.004 8.529 1
ȳ′2 -0.059 1.768 0.592 -0.042 1.532 0.348 -0.031 1.294 0.152

0.9
ȳ2m -0.081 3.062 1 -0.05 4.708 1 -0.015 8.709 1
ȳ′2 -0.07 1.981 0.647 -0.046 1.845 0.392 -0.012 1.777 0.204

0.8
ȳ2m -0.079 3.109 1 -0.052 4.861 1 -0.023 8.786 1
ȳ′2 -0.069 2.144 0.689 -0.051 2.057 0.423 -0.027 2.053 0.234

0.7
ȳ2m -0.076 3.148 1 -0.051 4.969 1 -0.029 8.834 1
ȳ′2 -0.068 2.287 0.726 -0.059 2.217 0.446 -0.047 2.24 0.254
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As anticipated, we can see that biases of ȳ2m and ȳ′2 are negligible. We can also know that
the biases of estimators are decreased more and more when sample size is increased. Table 3.1
shows that ȳ′2 is more efficient than ȳ2m for all response rates and correlation coefficients.
See the values of SMSE. We can find that the value of MSE(ȳ′2) tends to decrease as the
value of ρ increases. On the contrary, the simulation result shows that there is a tendency
for MSE(ȳ′2) to decrease as the response probability decreases. We empirically conclude
that the proposed estimator reveals more efficiency than the conventional estimator using
the reciprocal of response probability especially when the correlation coefficient is not too
small. Furthermore, it can be seen that our estimator becomes more efficient when the overall
response probability is small. In repeated surveys when the correlation coefficient is properly
large, the utilization of ȳ′2 can be recommended under a proper response probability.

4. Concluding remarks

In this paper we proposed a new estimator of the population mean at the second occasion
under repeated surveys when the loss of samples is possible at the second occasion. This esti-
mator combines an estimator of the samples responding at both occasions and an estimator
of the samples replacing missing data at the second occasion. The response probability is
allowed to be different for each unit and assumed to be ignorable. First, we investigated the
asymptotic mean and variance of the proposed estimator. It can be shown that the estimator
is asymptotically unbiased under some mild conditions.

In most realistic situations, the response probability is unknown and must be estimated
to be used in the new estimator. In this paper, through a simulation study, we investigated
the asymptotic behaviors of several estimators including the proposed one with estimated
response probabilities. It was empirically ascertained that our estimator has smaller variance
than the estimator using the reciprocal of response probability while both estimators are
asymptotically unbiased. This seems to be caused by the fact that the proposed estimator
uses the information in new samples replacing missing data and the correlation between
data of two occasions is not small. Thus, our new estimator will be an efficient candidate
in the estimation of the population parameter at the second occasion when missing samples
are replaced and the correlation is expected to be somewhat large. Theoretical evaluation
of the proposed estimator under complex survey remains as a future work.
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