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Abstract

The traditional methods of simulating daily precipitation have paid little attention
to the inherent dependence structure between the total precipitation amount and the
precipitation frequency for a fixed period of time. To address this issue, we propose
a new simulation algorithm using copula in order to incorporate the dependence into
the traditional methods. The algorithm consists of two parts: First, while reflecting the
observed dependence, we generate the total precipitation amount (S) and the frequency
(N) during the period of interest; then we simulate the daily precipitation whose ag-
gregation matches the pair of (N, .S) generated in the first part. Our result shows that
the proposed method substantially improves the traditional methods.

Keywords: Copula, daily precipitation simulation, gamma distribution, Markov chain.

1. Introduction

Simulating daily precipitation data is an important task with a wide range of applications,
e.g., agriculture (Sharpley and Williamson, 1990a, 1990b), ecology (Kittel et al., 1995),
hydrological systems (Pickering et al., 1988) and finance (Leobacher and Ngare, 2011).
Traditionally, the simulation has been governed by two independent stochastic models; one
for precipitation occurrence and the other for daily precipitation amount. For the former,
the Markov chain models have been used extensively and, for the latter, various stochastic
models such as exponential, gamma, skewed normal and mixed exponential distributions
have been used. The readers are referred to Chin (1977), Stern (1980), Richardson (1981),
Stern and Coe (1984), Richardson and Wright (1984), Nicks and Gander (1994), Duan et
al. (1998), Katz and Parlange (1998), Wilks (1999), Hayhoe (2000) and Wan et al. (2005)
for some early discussion.

However, a problem may arise under the traditional approach because the two stochastic
models are assumed to be independent. Let us illustrate this point with an example using
the traditional daily precipitation model for a fixed period of m days, where the number of
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precipitation occurrences (in days) during the period is denoted by N and the amount of
daily precipitation in the ¢-th occurrence is denoted by X;, where i = 1,2,--- , N. The usual
assumption is that the random variables X;s are independent and identically distributed
(i.i.d.) and are independent of N. Then, for the total precipitation denoted by S = Zil X;,
it holds that

Cov(N,S) = Couv(N, E[S|N]) = Cov(N, NE[X;]) = E[X;]Var(N). (1.1)

For the first identity, see, e.g., Ross (2007). Equation (1.1) implies that the individual mo-
ments of X; and N determine the covariance between N and S regardless of their actual or
observed dependent structure.

In Table 1.1, we present Pearson’s correlation coefficients between N and S based on the
daily observations of the month of July during the recent 30 years (1983~2012) from 9
major cities (Busan, Daegu, Daejeon, Gangneung, Gwangju, Incheon, Jeju, Seoul, Ulsan) in
South Korea. We have used the Korea Meteorological Administration (KMA) data. For the
observed monthly pairs (n;, s;),7 = 1,2, ..., 30 for each city, the correlation coefficients can be
obtained in two ways. By definition they can be calculated directly as p = Efﬂl (si —38)(n;—

ﬁ)/\/Z?&@z - 5)2\/2?21(7% —n)2 and the result is shown in the second column. Or, by

using equation (1.1), they can be obtained as p{1'!) = i\/Z?gl(nz - ﬁ)Q/\/Zfil(sZ —3)2
and the result is shown in the third column. The values p(*?) can be considered as the
correlation coefficients expected for the simulated data under the traditional approach. The
forth column contains the difference between the two. Note that the values in the third
column are consistently smaller than those in the second, and the differences are quite large
in some cases. This means that the traditional approach tends to underestimate the actual
dependence between N and .S, and hence the simulation results may deviate from reality.

Table 1.1 Pearson’s correlation coefficients

City P Z,{Ll) ﬁ—ﬁ“‘l)
Busan 0.7601  0.5726 0.2467
Daegu 0.656  0.5554 0.1533

Daejeon 0.5315 0.525 0.0122
Gangneung  0.5324  0.5079 0.046
Gwangju 0.6117  0.5337 0.1275
Incheon 0.7106  0.5149 0.2755

Jeju 0.6831  0.5891 0.1375
Seoul 0.6939  0.518 0.2536
Ulsan 0.7227  0.5633 0.2205

Average 0.6558  0.5422 0.1637

The main contribution of this paper is to present a new copula-based simulation algorithm
that takes into account the actual dependence structure within the traditional framework.
Our simulation algorithm consists of two parts: First, reflecting the observed dependence,
we generate values of NV and S for the given period and then generate the amounts of daily
precipitation using the simulated values of N and S. In order to inherit the simplicity of the
traditional approach, we will assume the widely used probability distributions for N and S,
i.e., the first-order Markov chain and the gamma distribution. Once the total precipitation is
generated, we will exploit the distributional property of gamma random variables to simulate
daily precipitation. We will focus on simulating within a certain period of the year, say one
month, to minimize the seasonal effect.
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The observed dependence structure between N and S will be modeled by employing a
multivariate distribution function called copula. The main advantage of using a copula is due
to Sklar’s theorem (1959) which states that any multivariate distribution can be separated
into its marginal distributions and a copula function. In other words, a copula model can be
useful in analyzing correlated (not necessarily identically distributed) random variables, say
X1, Xo, -+, X, whose joint probability distribution is unknown or analytically intractable.
The copula models have been popular in the field of finance and insurance (e.g. Cherubini,
2004; Malevergne and Sornette, 2006; Kim and Lee, 2011; Choi et al., 2013), and lately
introduced in the fields of meteorology and hydrology (e.g., Favre et al., 2004; Zhang and
Singh, 2007; Genest and Favre, 2007). For a general discussion of copula, the readers are
referred to Joe (1997) and Nelsen (2006).

The paper is constructed as follows. Section 2 explains some theoretical background, mod-
eling assumptions, and the idea behind the proposed simulation algorithm. Section 3 intro-
duces a performance measure for comparing simulation methods and summarizes the nu-
merical result based on the performance measure. Finally, Section 4 concludes the paper
with further comments.

2. Stochastic models, parameter estimation
and simulation algorithm

2.1. Precipitation models

Let us assume that the fixed period of interest consists of m days. As mentioned earlier,
the precipitation occurrence is modeled by the first-order Markov chain {Y}};-, with two
states {0, 1}. The state-0 on day k, i.e., Y = 0, means that there is no rain (the amount of
precipitation less than 0.1 mm) on day k and state 1 represents the opposite. The transition
probabilities are denoted by pgr = P(Yy = r|Yip—1 = q) for ¢,r € {0,1} and the transition
probability matrix by M = [”00 pm}. Obviously, if N denotes the number of rainy days

P10 P11
during the period, it should hold that N = Y";", V.
For a given N = n > 0, the amount of precipitation on the i-th rainy day, X;,¢ =
1,2,--- ,n, is modeled by i.i.d. gamma random variables with a shape parameter of o and a
scale parameter of 5. That is, the common probability density function (p.d.f.) is given by

in (x) = F(Oél)ﬁo‘

2 e /P 2> 0.

Then it follows from the additive property of the gamma distribution that S = Y"1, X; has
a gamma distribution with a shape parameter of na and a scale parameter of 8. It is well
known that (X1, -+, X,,) given that S = s reduces to a Dirichlet distribution with the p.d.f.

L(na) (z)*t--(2n)*!

T, ,Tpls) = ,
le; }ans( 1 7l| ) {F (a)}n Snail
zy >0, ;x, >0+ +x, =5>0.
Note that the scale parameter § is irrelevant. Moreover, if Wy, -, W,, are i.i.d. gamma ran-

dom variables with a shape parameter of o and an arbitrary scale parameter, it is also known
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that (W1 jWiWn ST iWiWJ has the same Dirichlet distribution (see Hogg and Craig,
1978). These distributional properties will be used later for generating daily precipitation of
(X1,---,X,) conditional on total precipitation S = s.

Unconditionally, the total precipitation S may not be gamma distributed, but it is assumed
to follow the gamma distribution for simulation purposes in the first part of our simulation
algorithm. This assumption can be justified through empirical investigation, if necessary.
The shape parameter and scale parameter of the distribution of S will be denoted by a and
b, respectively.

2.2. Copula models

This subsection briefly reviews the bivariate copulas that will be used later.

A bivariate copula function C(u,v) is a two-dimensional joint distribution function whose
univariate marginal distributions are uniform in the interval [0, 1]. For a given copula C'(u, v),
a joint distribution of N and S can be defined as

Fn s(n,s) =C (Fn(n), Fs(s)), (2.1)

where Fy(n) and Fs(s) are the cumulative distribution functions for N and S, respectively.
Conversely, there always exists a copula function C(u,v) satisfying (2.1) for a given joint
distribution Fy s(n,s). In our case, C(u,v) may not be unique because N is a discrete
random variable. See Nelsen (2006) for more detail.

Among the numerous copula models, we tried MATLAB-supplied copulas such as the
Clayton copula, the Frank copula, the Gumbel copula, the Gaussian copula and the Student-
t copula. The former three copulas belong to the class of Archimedean copula with the
following explicit functional forms; the Clayton copula with parameter § > 0 takes the form

Clu,v) = (™ +07% —1)"1/7,

the Frank copula with parameter § € (—oo0,00) \ {0} is given by

(6791/, _ 1)(6701/ _ 1)) .

e V-1

1
C(u,v) = —gln (1 +
and the Gumbel copula with parameter 6 > 1 is of the form

C(u,v) = exp (— [(— Inu)’ + (- lnv)e} 1/0> .

The Archimedean copulas are very popular in many areas and have been applied for ana-
lyzing meteorological data by earlier researchers. See, for instance, Favre et al. (2004) and
Zhang and Singh (2007). On the other hand, not allowing for compact functional forms, the
Gaussian and the Student-t copulas are also extensively used in applied fields. In particu-
lar, the Gaussian copula is useful for simulating values with prescribed correlations and the
Student-t copula appropriate for modeling tail dependence.
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2.3. Estimation procedure

The simulation algorithm in the following subsection will require the estimates of the
gamma parameters («, ) for the daily precipitation amount and the gamma parameters
(a, b) for the total precipitation amount and the transition probability matrix M. To estimate
the gamma parameters, we have used the maximum likelihood estimation (MLE) method.
The transition probabilities have also been obtained by MLE, i.e., by counting the number
of rainy days in the given data. So, for each ¢,r € {0,1},
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where Y} takes on 0 if there is no rain on day k in year h and 1 otherwise, and I (-) denotes
an indicator function. Here T" and m represent the number of years and the number of days
within a specific month, respectively. In this paper, T' = 30 and m = 30 or 31 depending on
the number of days in the month.

In the first part of the simulation algorithm below, we will generate random samples of
N and S by the inverse transformation method. Since S is assumed to follow the gamma
distribution with parameters a and b, the values of S can be simulated as Fg ' (U;@a,b) with
a uniformly distributed random variable U on (0, 1) and MLEs @ and b. However, it is not so
easy to find the distribution function of V. Hence we are going to generate a large number,
say, 108 of Markov chains {Y7,Y5,...,Y,,} using the estimated transition probability matrix
M and estimate the distribution function of N from the simulated values. Let us denote the
estimated empirical distribution function by Fx(n; M) based on the 10° simulated values.
Now the values of N can be simulated as F gl(V; M ) with a uniformly distributed random
variable V on (0, 1).

On the other hand, each copula model can be fitted by using the MATLAB function ‘copu-
lafit’ (see "http://www.mathworks.co.kr/kr/help/stats/copulafit.html" for more de-
tail). For an observed data set of {(n1,s1), (na,s2), -+, (nr, s7)}, the input of the function
is the pairs of the empirical distributions given by

1< 1<
Fy(n) = T2I(ni <n) and F§(s) = TEI(&‘ < s).
Then the function ‘copulafit’ returns MLEs for copula parameters. We repeat this procedure
for the 5 candidate copulas and determine the best copula in Subsection 3.b.

2.4. Simulation algorithm

Our simulation algorithm consists of two parts. First we generate a random sample of
(N,S) and then we generate two sets of daily precipitation amounts and occurrences,
s N
{X1, X5, -+, Xn} and {Y7,Ys, -+, Y, }, satisfying S = >, X; and N =" | Vj.

Algorithm-A: generating the total precipitation
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(A1) Generate a uniform random sample of (U,V) whose joint distribution is the fitted
copula.

(A2) Set N = Fy'(V; M) and S = F5'(U;a,b).

To implement (A1), we have used the MATLAB function ‘copularnd’. For the simulated
pair of (n, s), the daily precipitations can be obtained as follows.

Algorithm-B: generating the daily precipitation

(B1) Generate a random sample of {Wy, Wa,--- W, } from the gamma distribution with
the estimated shape parameter @ and arbitrary scale parameter.

(B2) Set X, = Z;?lev for each 7 = 1,2,--,n.
j=1""J

(B3) Repeat generation of a random sample of {Y1,Y5, -+ ,Y,,} until we get n=>"7" | V}.

(B4) For each j =1,2,--- ,m,if Y; =1, set h; = Zi:l Yy and D; = Xj,;. Otherwise, set
D; =0.

The computational burden of (B3) is not too heavy because, if we let ¢ = P(}1", Y; =
n) > 0, then the probability of not getting a random sample of {Y7,Y5,---,Y,,} satisfying
n =3, Y until the r-th trial is (1 — ¢)” and expected running time of the algorithm is
g~ '. Even if ¢ is small, the probability will converge to zero exponentially fast, and hence
it can be expected that the random sample will be obtained within a reasonable amount of
time. Finally, (B4) combines the generated data sets to construct a random sample of the
unconditional daily precipitation {D1, Da, -+, Dy, }.

Figure 2.1 illustrates Algorithm-A for a given data (Busan, July): Figure 2.1-(a) plots the
pairs of the given data {(n,, 51‘)}?21 ; Figure 2.1-(b) the pairs of the empirical distributions
{(F%(ni), Fg(si))}f’il ; Figure 2.1-(c) 100 pairs of uniform random numbers from the fitted
copula; and Figure 2.1-(d) 100 pairs of (N, .S).
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Figure 2.1 100 simulated values of (N, S) using Algorithm-A, Busan, July, 1983~2012
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3. Model comparison

For comparing models in this section, we used the KMA 30-year (1983~2012) daily precip-
itation data of 9 cities (Busan, Daegu, Daejeon, Gangneung, Gwangju, Incheon, Jeju, Seoul,
Ulsan) in South Korea from the month of July to September. We simulate daily precipita-
tion under each model and estimate from the simulated data set the transition probability
matrix, the gamma parameters and the correlation coefficient between N and S. If a simu-
lation method results in the parameter estimates closest to the estimates from the observed
data, then it will be considered the best among the copula models considered. The measure
of closeness will be introduced in Subsection 3.1, and the result summarized in Subsection
3.2.

3.1. Performance measure

Throughout this section, we will use the symbol © to represent which data set is in use
for the parameter calculation. If the calculation is based on the observed data, it will be
denoted by © = O ; if on the simulated data under the traditional model, ©® = T'r ; and if
on the simulated data under a copula model, © = C'1 ~ C5 (C1 (Gaussian), C2 (Student-t),
C3 (Clayton), C4 (Frank), C5 (Gumbel)). So the notations M®, (@°, 3°) and 5° represent
the parameter estimates and reveal which data set is being used. Our performance measure
of a simulation method is defined through the following relative gap.

Definition 3.1 For two matrices A and B of identical dimensions, we define the relative
gap with respect to A as g(A, B) = ||A — B||r/||A||r where || - ||F denotes the Frobenius

norm defined by [|A|[p = /332, D77, A7; where A € R™*™.

The concept of relative gap (or relative error) is widely used for measuring relative dis-
tance between two mathematical quantities such as matrices (see "http://www.netlib.
org/lapack/lug/node75.html" for more detail). Obviously, the relative gap g(A, B) is not
symmetric, but it can be considered as an adjusted distance between A and B in terms of
the magnitude of A. So, if g(A, B) < g(A,C), we can say that B is closer to A than C is.

Suppose that we have estimated parameters {]/W\ © (a®, 39), ﬁe} Our performance mea-

sure is defined as
G(0,0) = g(M°, M®) + g((@°, 8°),(@°, 3°)) + 9(5°, 5°)-

It simply adds the relative gaps with equal weights being given to the estimates of the Markov
chain parameters, the gamma parameters, and the correlation coefficient. The motivation
behind the performance measure is that, for an ideal simulation method, we can expect that
the value of G(O,©) would be small because the parameter estimates from the simulated
values under the ideal method would be close to those from the observed data. Thus a
simulation method ©; can be considered better than O, if G(O,01) < G(O, O2).

3.2. Computational result

In this subsection, we compare our copula models (@ = C1 ~ C5) with the traditional
method (© = T7). In order to do so, we generated 10° sets of monthly precipitation (or
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10° x m daily precipitation amounts) for each region and each month, obtained the parameter
estimates, and calculated the performance measure G(O, ©).

Table 3.1 shows which copula produces the smallest G(O, ©) among the 5 copula models.
The Gumbel copula and the Gaussian copula were selected as the best for 25 out of 27 cases
(9 regions, 3 months), and the Student-t copula selected twice. The Clayton copula and the
Frank copula did not produce the best result in any of the cases.

Table 3.1 Copula models with the smallest G(O, ©)

July August September

Busan Student-t Gaussian Gaussian
Daegu Gumbel Gumbel Gumbel

Daejeon Gaussian Gumbel Student-t

Gangneung Gumbel Gumbel Gaussian
Gwangju Gumbel Gaussian Gumbel
Incheon Gaussian Gumbel Gaussian
Jeju Gumbel Gaussian Gaussian
Seoul Gaussian Gumbel Gumbel
Ulsan Gumbel Gaussian Gaussian

Table 3.2 summarizes the performance measures of the traditional method and the best
copula models selected in the previous step. The result shows that, on average, our best cop-
ula model reduces the performance measure by about 50%, which implies that our method
can generate daily precipitation with statistical characteristics closer to the observed data
than the traditional method. Observe that there are 6 cases (indicated by the asterisk in
Table 3.2) where the traditional method performs better than our copula method. So we
investigated these cases more carefully and found that it could happen when the traditional
method generates random samples whose correlation coefficient is close to that of the ob-
served data. Therefore we recommend that our method be used if there is a significant
discrepancy between the correlation coefficients from the observed data and the traditional
method as illustrated in Table 1.1 Although not presented in this paper, the decomposition
of the values of G(O, ©) shows that, when our copula method is used, the relative gaps of
g(ZTf\O7 ]/\4\9) and g((a?, BO), (629,3@)) are slightly larger but the relative gap of g(p?, p®)
is significantly smaller than the traditional counterparts.

Table 3.2 The values of G(O,©) under the traditional method and the best copula method

July August September
G(O,Tr) G(0,0) G(O,Tr) G(0,0) G(O,Tr) G(0,0)
Busan 0.2975 0.1111 0.2875 0.1124 0.1893 0.0908
Daegu 0.2071 0.1326 0.1693 0.0972 0.1962 0.0914
Daejeon 0.0626 0.0893* 0.1600 0.1017 0.2762 0.1172
Gangneung 0.0928 0.0582 0.5149 0.2475 0.0702 0.0712*
Gwangju 0.1800 0.1301 0.2394 0.1433 0.1831 0.0714
Incheon 0.3208 0.0606 0.0696 0.1175* 0.1412 0.1461%*
Jeju 0.1978 0.0901 0.0860 0.1413* 0.2514 0.0593
Seoul 0.2984 0.0839 0.2565 0.0540 0.0685 0.1143%*
Ulsan 0.2677 0.1453 0.1092 0.0739 0.2595 0.0839
Average 0.2139 0.1001 0.2103 0.1210 0.1817 0.0940

* indicates the cases where the traditional method performs better than our copula method.
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In Figure 3.1, we plotted the 100 simulated pairs of (N, S) under the traditional method
and our copula method for the month of July in Seoul. As shown in the figure, the traditional
method tends to underestimate the dependence between NV and S, and hence the simulated
pairs are more widely spread out than the observed data. On the other hand, our method
could overcome this shortcoming by modeling the observed dependence structure through
copula.

(a) (N,S) Observations (b) Traditional (c) Copula
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Figure 3.1 Comparison of the traditional and the copula method:100 random samples of (N, S) for the
month of July in Seoul

4. Concluding remarks

This paper proposes a new simulation algorithm for generating daily precipitation within
a fixed period of time. Unlike the traditional approach where the dependence between the
total precipitation amount and the precipitation frequency has not been accounted for, the
proposed method incorporates the dependence structure into the traditional methods by
using copulas. The result shows that our simulation method can be more effective if there is
a noticeable difference between the correlation coefficients of the observed values and those
of the traditionally simulated values.

To inherit the simplicity of the traditional method, we have considered the first-order
Markov chain and the gamma distributions. It is possible that the versatility of copulas will
allow us to accommodate other stochastic models without much difficulty. For instance, the
Markov chain can be replaced by the binomial model. If this is the case, then the algorithm
for generating the precipitation frequency would be much simpler.

As mentioned earlier, this paper has focused on simulating daily precipitation within a
fixed period of time, say, one month in order to minimize the seasonal effect. In particular,
we have used the precipitation data for the month of rainy season in the hope that our
algorithm could be used to develop and price precipitation insurance. However, we think
that it is worthwhile to extend our copula method by reflecting seasonality in the future
research.

Finally, we also would like to mention that our copula method for simulating daily precipi-
tation is applicable to other areas such as the collective risk model for casualty and property
insurance. The traditional precipitation model has a probabilistic structure similar to the
collective risk model where S is the aggregate amount of losses for insurance company, X;
is the i.i.d. individual amount of loss, and NV is the number of accidents independent of Xj.
If the observed data of S and NN reveals a certain dependence structure other than that
implied by Equation (1.1), then our simulation method can be adopted for generating the
individual amount of loss.
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