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Abstract

It is known that the difference in the length between two location parameters of
two random variables is equivalent to the difference in the area between two cumulative
distribution functions. In this paper, we suggest two applications by using the difference
of distribution functions. The first is that the difference of expectations of a certain
function of two continuous random variables such as the differences of two kth moments
and two moment generating functions could be defined by using the difference between
two univariate distribution functions. The other is that the difference in the volume
between two empirical bivariate distribution functions is derived. If their covariance
is estimated to be zero, the difference in the volume between two empirical bivariate
distribution functions could be defined as the difference in two certain areas.
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1. Introduction

Let us consider two continuous random variables, X1 and X2, and their corresponding
cumulative distribution functions (CDFs), F1(·) and F2(·), respectively. It is known that
the difference in the length between two location parameters of two random variables is
equivalent to the difference in the area (gap) between two CDFs, that is, E(X2)−E(X1) =∫

[F1(x)−F2(x)]dx (Holland, 2002; Hong, 2013). And Hong (2013) showed that the difference
in the area between the empirical two CDFs is the same as the difference value of the two
sample means.

In this paper, we extend to ∫
h′(x)[F1(x)− F2(x)]dx, (1.1)

where h′(x) is a derivative of a certain function h(x) with respect to x. It is found that
the integration in (1.1) could be defined as the difference between two expectation of some
function h(·), that is E[h(X2)] − E[h(X1)]. For example, if a function h(x) is Xk or etX

for integer k and some appropriate interval of t, then integration in (1.1) turns to be the
differences of two kth moments or moment generating functions. These will be showed in
Section 2 with some distribution examples.
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In Section 3, we consider two bivariate random variables (X1, Y1) and (X2, Y2), and their
corresponding bivariate CDFs, F1(·, ·) and F2(·, ·), respectively. The difference in the volume
between two empirical bivariate CDFs will be defined and explored. And the difference in
the volume between two bivariate CDFs is also discussed in Section 3. Section 4 provides
the conclusion.

2. The difference between expectations of h(X1) and h(X2)

The difference of two expectations of X1 and X2 can be extended to that of h(X1) and
h(X2) for a certain function h(X) by using the difference of two CDFs.

Theorem 2.1 The difference between two expectations of a continuous and differentiable
function h(X) defined on real number is expressed as

E[h(X2)]− E[h(X1)] =

∫ ∞
−∞

h′(x)[F1(x)− F2(x)]dx, (2.1)

where h′(x) is a derivative of h(x).

Proof : Note that E[h(X)] = h(0) +
∫∞

0
h′(x)[1 − F (x)]dx, where a continuous function

h(x) is defined on x ∈ (0,∞) with the derivative h′(x) (Hong, 2011, p. 81). Hence for a
continuous function h(x) on x ∈ (−∞,∞), the RHS in (2.1) is obtained with ease. �

First, a function h(X) is regarded as Xk for k = 1, 2, . . .. Then the expectation of h(X)
turns to be the kth moment of the random variable X.

Corollary 2.1 The difference between two kth moments is expressed as

E[Xk
2 ]− E[Xk

1 ] =

∫ ∞
−∞

kxk−1[F1(x)− F2(x)]dx. (2.2)

Proof : It is obtained that

E[Xk
1 ] =

∫ ∞
−∞

xkf1(x)dx

=

∫ ∞
0

∫ x

0

kuk−1f1(x)dudx−
∫ 0

−∞

∫ 0

x

kuk−1f1(x)dudx

=

∫ ∞
0

kuk−1

∫ ∞
u

f1(x)dxdu−
∫ 0

−∞
kuk−1

∫ u

−∞
f1(x)dxdu

=

∫ ∞
0

kuk−1[1− F1(u)]du−
∫ ∞

0

(−1)k−1kuk−1F1(−u)du

=

∫ ∞
0

kxk−1[1− F1(x) + (−1)kF1(−x)]dx.

Therefore E[Xk
2 ]− E[Xk

1 ] could be derived∫ ∞
0

kxk−1[1− F1(x) + (−1)kF1(−x)]dx−
∫ ∞

0

kxk−1[1− F2(x) + (−1)kF2(−x)]dx,

which is the same as the RHS in (2.2). �
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We illustrate some examples of the difference between kth moments of two random vari-
ables which follow normal, lognormal and chi-squared distributions. But these examples are
not based on the proof process of Corollary 2.1 but obtained by using the exchange the order
of the double integral.

Example 2.1 Consider the difference between 2nd moments of two normal distributions
such as F1(x) ≡ Φ1(x;µ1, σ1) and F2(x) ≡ Φ2(x;µ2, σ2). Then, the difference is

E[X2
2 ]− E[X2

1 ] =

∫ ∞
−∞

2x[Φ1(x)− Φ2(x)]dx =

∫ ∞
−∞

2x

∫ (x−µ1)/σ1

(x−µ2)/σ2

φ(z)dzdx

=

∫ ∞
−∞

∫ (µ2+σ2z)

(µ1+σ1z)

2xdxφ(z)dz = (µ2
2 − µ2

1) + (σ2
2 − σ2

1).

Example 2.2 For two log-normal distributions such as F1(x) ≡ Φ((lnx− µ1)/σ1) and
F2(x) ≡ Φ((lnx− µ2)/σ2), the difference of two kth moments is

E[Xk
2 ]− E[Xk

1 ] =

∫ ∞
0

kxk−1[Φ(
lnx− µ1

σ1
)− Φ(

lnx− µ2

σ2
)]dx

=

∫ ∞
−∞

∫ eµ2+σ2·z

eµ1+σ1·z
kxk−1dxφ(z)dz

=
1√
2π
ekµ2+ 1

2 (kσ2)2
∫ ∞
−∞

e−
(z−kσ2)2

2 dz− 1√
2π
ekµ1+ 1

2 (kσ1)2
∫ ∞
−∞

e−
(z−kσ1)2

2 dz

= exp(kµ2 +
1

2
(kσ2)2)− exp(kµ1 +

1

2
(kσ1)2).

Note that E[Xk] = exp[kµ+ (kσ)2/2].

Example 2.3 Consider two gamma distributions such as F1(x) ≡ G(x; r, λ1), F2(x) ≡
G(x; r, λ2). Then, the difference of two kth moments is

E[Xk
2 ]− E[Xk

1 ] =

∫ ∞
0

kxk−1[G1(x)−G2(x)]dx =

∫ ∞
0

kxk−1

∫ x
λ1

x
λ2

g(s; r, 1)dsdx

=

∫ ∞
0

∫ λ2s

λ1s

kxk−1dxg(s; r, 1)ds =

∫ ∞
0

[(λ2s)
k − (λ1s)

k]
1

Γ(r)
sr−1e−sds

=

∫ ∞
0

(λk2 − λk1)
1

Γ(r)
sk+r−1e−sds

= (λk2 − λk1)
Γ(k + r)

Γ(r)

∫ ∞
0

1

Γ(k + r)
sk+r−1e−sds

= (λk2 − λk1)
Γ(k + r)

Γ(r)
.

Note that E[Xk] = λkΓ(k + r)/Γ(r).
Consider h(X) as etX for some interval of t. Then the expectation of h(X) turns to be

the moment generating function (MGF) of the random variable X. Then the difference of
MGFs can be defined as the following.
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Corollary 2.2 Suppose that there exist the MGFs of the random variable X1 and X2. The
difference of MGFs is represented as

MX2
(t)−MX1

(t) =

∫ ∞
−∞

tetx[F1(x)− F2(x)]dx (2.3)

Proof : Note that

MX1
(t) = E[etX1 ] =

∫ ∞
−∞

etxf1(x)dx

=

∫ ∞
−∞

∫ x

−∞
tetuduf1(x)dx =

∫ ∞
−∞

tetu
∫ ∞
u

f1(x)dxdu

=

∫ ∞
−∞

tetx[1− F1(x)]dx.

Hence MX2
(t)−MX1

(t) could be derived∫ ∞
−∞

tetx[1− F2(x)]dx−
∫ ∞
−∞

tetx[1− F1(x)]dx,

so that the RHS in (2.3) is obtained with ease. �

Examples of the difference between MGFs of two random variables whose distributions
are normal and gamma are showed. But these examples are solved by exchanging the order
of the double integral.

Example 2.4 Consider two normal distributions which are the same as those in Example
2.1. Then the difference of MGFs of normal distributions is

MX2
(t)−MX1

(t) =

∫ ∞
−∞

tetx[Φ1(x)− Φ2(x)]dx =

∫ ∞
−∞

∫ µ2+σ2·z

µ1+σ1·z
tetxdxφ(z)dz

=

∫ ∞
−∞

[et(µ2+σ2z) − et(µ1+σ1z)]
1√
2π
e−

z2

2 dz

=
1√
2π

∫ ∞
−∞

e−
(z+tσ2)2

2 +(tµ2+
t2σ22

2 )dz

− 1√
2π

∫ ∞
−∞

e−
(z+tσ1)2

2 +(tµ1+
t2σ21

2 )dz

= exp(tµ2 + t2σ2
2/2)− exp(tµ1 + t2σ2

1/2).

Example 2.5 For the same gamma distributions as those in Example 2.3, the difference of
MGFs of gamma distributions is

MX2
(t)−MX1

(t) =

∫ ∞
0

tetx[G1(x)−G2(x)]dx =

∫ ∞
0

tetx
∫ x

λ1

x
λ2

g(s; r, 1)dsdx

=

∫ ∞
0

∫ λ2s

λ1s

tetxdxg(s; r, 1)ds =

∫ ∞
0

(eλ2ts − eλ1ts)g(s; r, 1)ds

=

∫ ∞
0

1

Γ(r)
sr−1e−(1−λ2t)sds−

∫ ∞
0

1

Γ(r)
sr−1e−(1−λ1t)sds

= 1/(1− λ2t)
r − 1/(1− λ1t)

r,
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for t < 1/λi (i = 1, 2). Note that the MGF of gamma distribution is MX(t) = 1/(1− λt)r.

3. The difference in volume between two bivariate CDFs

Let us extend our study to bivariate cases. Suppose that two independent bivariate ran-
dom samples, {(X11, Y11), . . . , (X1n, Y1n)} and {(X21, Y21), . . . , (X2m, Y2m)}, of size n and
m are collected from bivariate CDFs F1(·, ·) and F2(·, ·), respectively. Let (x(1n), y(1n)) and
(x(2m), y(2m)) be the largest order statistic values from each bivariate random samples. And
for i = 1, 2, . . . , n+m, (x(pi), y(pi)) is defined as the ith order statistic value of the pooled bi-
variate random samples {(X11, Y11), . . . , (X1n, Y1n), (X21, Y21), . . . , (X2m, Y2m)}. Then the
difference in the volume between two empirical bivariate CDFs, F̂1(x, y) and F̂2(x, y), is
expressed as the following:

m+n−1∑
j=1

m+n−1∑
i=1

[F̂1(x(pi), y(pj))−F̂2(x(pi), y(pj))](x(p(i+1)) − x(pi))(y(p(j+1)) − y(pj)). (3.1)

Then the difference defined in (3.1) can be obtained in Theorem 3.1.

Theorem 3.1 If x(1n) ≤ x(2m) and y(1n) ≤ y(2m), the difference in the volume between two
empirical bivariate CDFs results in

x(2m)(Ȳ2 − Ȳ1) + y(2m)(X̄2 − X̄1) + X̄1 Ȳ1 − X̄2 Ȳ2

+
1

n

n∑
i=1

(x1i − X̄1)(y1i − Ȳ1)− 1

m

m∑
j=1

(x2j − X̄2)(y2j − Ȳ2).

Proof : The double summation in (3.1) is represented as the difference between the following
two parts

m+n−1∑
j=1

m+n−1∑
i=1

F̂1(x(pi), y(pj))(x(p(i+1)) − x(pi))(y(p(j+1)) − y(pj)) and

m+n−1∑
j=1

m+n−1∑
i=1

F̂2(x(pi), y(pj))(x(p(i+1)) − x(pi))(y(p(j+1)) − y(pj)).

When x(1n) ≤ x(2m) and y(1n) ≤ y(2m), the first part,
∑m+n−1
j=1

∑m+n−1
i=1 F̂1(x(pi), y(pj))

(x(p(i+1)) − x(pi))(y(p(j+1)) − y(pj)), is the volume under the sample distribution F̂1(·, ·)
corresponding to {(x(11), y(11)), . . . , (x(1n), y(1n)), (x(2m), y(2m))} among the pooled random
samples, where F1(x(11), y(11)) = 1/n and F1(x(1n), y(1n)) = F1(x(2m), y(2m)) = 1. Hence,

n−1∑
i=1

i

n
[(x(2m) − x(i))(y(i+1) − y(i)) + (y(2m) − y(i))(x(i+1) − x(i))

−(x(i+1) − x(i))(y(i+1) − y(i))] + [(x(2m) − x(1n))(y(2m) − y(1n))]

= −x(2m)Ȳ1 − y(2m)X̄1 + X̄1 Ȳ1 +
1

n

n∑
i=1

(x1i − X̄1)(y1i − Ȳ1) + x(2m)y(2m), (3.2)
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where
∑n
i=1 x(1i)y(1i) =

∑n
i=1(x1i− X̄1)(y1i− Ȳ1) +nX̄1 Ȳ1, and where X̄1 =

∑n
i=1 x(1i)/n,

Ȳ1 =
∑n
i=1 y(1i)/n.

The second part,
∑m+n−1
j=1

∑m+n−1
i=1 F̂2(x(pi), y(pj))(xp((i+1)) − x(pi))(y(p(j+1)) − y(pj)), is

the volume under the sample distribution F̂2(·, ·) corresponding to {(x(21), y(21)),
. . . , (x(2m), y(2m))}, where F2(x(21), y(21)) = 1/m and F2(x(2m), y(2m)) = 1. Hence,

m−1∑
i=1

i

m
[(x(2m) − x(i))(y(i+1) − y(i)) + (y(2m) − y(i))(x(i+1) − x(i))

−(x(i+1) − x(i))(y(i+1) − y(i))] + [(x(2m) − x(1n))(y(2m) − y(1n))]

= −x(2m)Ȳ2 − y(2m)X̄2 + X̄2 Ȳ2 +
1

m

m∑
j=1

(x2j − X̄2)(y2j − Ȳ2) + x(2m)y(2m). (3.3)

Therefore, the difference between (3.2) and (3.3) leads to the results of Theorem 3.1. �

Alternatively, the result of Theorem 3.1 could be formulated as

x(2m)(Ȳ2 − Ȳ1) + y(2m)(X̄2 − X̄1) + X̄1 Ȳ1 − X̄2 Ȳ2 + ˆCov(X1, Y1)− ˆCov(X2, Y2). (3.4)

Theorem 3.1 is defined under the condition x(1n) ≤ x(2m) and y(1n) ≤ y(2m). For other
three types of conditions, Theorem 3.1 could be represented in Corollary 3.1.

Corollary 3.1 The difference in the volume between two empirical bivariate CDFs in (3.1)
could be formulated for three types of conditions:

x(2m)(Ȳ2 − Ȳ1) + y(1n)(X̄2 − X̄1) + X̄1 Ȳ1 − X̄2 Ȳ2 + ˆCov(X1, Y1)− ˆCov(X2, Y2),

for x(1n) ≤ x(2m) and y(1n) > y(2m),

x(1n)(Ȳ2 − Ȳ1) + y(2m)(X̄2 − X̄1) + X̄1 Ȳ1 − X̄2 Ȳ2 + ˆCov(X1, Y1)− ˆCov(X2, Y2),

for x(1n) > x(2m) and y(1n) ≤ y(2m),

x(1n)(Ȳ2 − Ȳ1) + y(1n)(X̄2 − X̄1) + X̄1 Ȳ1 − X̄2 Ȳ2 + ˆCov(X1, Y1)− ˆCov(X2, Y2),

for x(1n) > x(2m) and y(1n) > y(2m). �

If estimates of the covariance of two random variables are zero, i.e., ˆCov(X, Y ) = 0 in
(3.4), then the difference between the two independent empirical bivariate CDFs in (3.1) is
summarized briefly as

x(2m)(Ȳ2 − Ȳ1) + y(2m)(X̄2 − X̄1) + X̄1 Ȳ1 − X̄2 Ȳ2

= (x(2m) − X̄1)(y(2m) − Ȳ1)− (x(2m) − X̄2)(y(2m) − Ȳ2).

When we assume that x(1n) < x(2m), y(1n) < y(2m), and X̄1 < X̄2, Ȳ1 < Ȳ2, the difference
in the volume between the two independent empirical bivariate CDFs in Corollary 3.2 can
be interpreted as the difference in the area between rectangles A and B:

A = [x(2m) − X̄1]× [y(2m) − Ȳ1]

B = [x(2m) − X̄2]× [y(2m) − Ȳ2].
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These two rectangles A and B could be drawn in Figure 3.1. And Figure 3.1 show that
the difference in the area between rectangles A and B is equivalent to the difference in the
volume between the two independent empirical bivariate CDFs. If the random variables are
not independent, it is known that the difference in the volume between the two empirical bi-
variate CDFs is adjusted as the amount that [Ĉov(X1, Y1)−Ĉov(X2, Y2)] from the difference
in the area between rectangles A and B.

Figure 3.1 The difference of the two empirical CDFs when X, Y are independent

The double integral of the difference between the two bivariate CDFs, F1(·, ·) and F2(·, ·),
is derived as follows:∫ ∞

−∞

∫ ∞
−∞

[F1(x, y)− F2(x, y)]dxdy

= (µy2−µy1)

∫ ∞
0

dx+(µx2
− µx1

)

∫ ∞
0

dy + µx1
µy1−µx2

µy2 +Cov(X1, Y1)−Cov(X2, Y2).

Nonetheless, this double integration could not be well defined, since (µy2 − µy1)
∫∞

0
dx +

(µx2 − µx1)
∫∞

0
dy cannot be obtained as well as that F1(x, y)− F2(x, y) does not converge

to zero for some x and y.

4. Conclusion

Even though there are many statistical methods by using the difference of two CDFs,
most of these methods are not to estimate their corresponding expectations and location
parameters. In this paper, two methods using the difference of two CDFs are proposed. One
is that the difference of expectations of a certain function of two random variables can be
represented in terms of the difference between two corresponding CDFs. With this theory,
it is possible to obtain the difference of two kth moments as well as the difference of two
MGFs by using the difference of two CDFs. The second is for bivariate CDF. The difference
in the volume between two empirical bivariate CDFs based on random samples is defined
and derived. This difference could be expressed in terms of sample mean vector, covariance
matrix, and the vector of largest order statistics. In particular, when their covariance is
estimated to be zero, this difference in the volume is defined as the difference in the area of
two rectangles.
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