DOI QR코드

DOI QR Code

북방전복, Haliotis discus hannai의 장거리 수송을 위한 적정 수온 및 염분 조건

Optimum environmental condition of live container for long distance transport in live abalone Haliotis discus hannai

  • 양성진 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 명정인 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 박정준 (국립수산과학원 전략양식연구소 양식관리과) ;
  • 신윤경 (국립수산과학원 전략양식연구소 양식관리과)
  • Yang, Sung-Jin (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Myeong, Jeong-In (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Park, Jung-Jun (Aquaculture Management Division, Aquaculture Research Institute, NFRDI) ;
  • Shin, Yun-Kyung (Aquaculture Management Division, Aquaculture Research Institute, NFRDI)
  • 투고 : 2014.12.05
  • 심사 : 2014.12.26
  • 발행 : 2014.12.31

초록

북방전복을 활어상태로 장거리 수송에 적합한 수온 및 염분의 조건을 구명하기 위하여 수온 및 염분 별 생존율, 산소소비율의 생리적리듬 및 조직학적 변화를 조사하였다. $10^{\circ}C$$8^{\circ}C$에서는 모든 염분에서 생존율이 96-100%로 폐사가 거의 발생하지 않았다. $6^{\circ}C$$4^{\circ}C$의 경우 염분의 영향이 뚜렷하게 나타났으며 북방전복의 염분내성농도는 24.9 psu (Shin et al., 2011) 으로 염분 25 psu 이하는 생존에 영향을 미치는 염분이므로 저수온과의 복합 영향을 고려해볼 때 수송조건에 적합하지 못한 것으로 여겨진다. 북방전복의 24시간 동안 산소소비율의 일주리듬은 일반해수와 염분 $30{\pm}0.5psu$에서 수온간에 유의한 차이를 나타내지 않았다. 염분 및 수온 별 산소소비율은 모든 염분에서 수온이 하강할수록 감소하였으며, 일반해수에 비해 $30{\pm}0.5psu$에서 산소소비율은 다소 높게 나타났다. 북방전복 발상피와 근육의 조직학적 지표는 염분 $30{\pm}0.5psu$이하와 수온 $6^{\circ}C$이하의 복합구에서 상피층의 두께 감소 또는 혈림프동 확장 등이 관찰되었다. 이러한 결과로부터 북방전복의 장거리수송을 위한 수온의 적정범위는 $8-10^{\circ}C$, 염분은 $30{\pm}0.5psu$이상으로 여겨진다.

We investigated the survival rate by water temperature and salinity, physiological rhythm and morphological change of live abalone to get to know optimum water temperature and salinity suitable for long-distance transportation of live abalone. At $8^{\circ}C$ and above, 96-100% of survival rate was shown at all experiment groups. At $6^{\circ}C$, 66% of abalones survived in normal seawater but they showed 0% of survival rate at $30{\pm}0.5psu$ and $26{\pm}0.5psu$ of salinity at the same water temperature. There was no significant difference of oxygen consumption rate for a week between the seawater and $30{\pm}0.5psu$. Also, a positive correlation was shown between salinity and water temperature and the oxygen consumption rate was slightly higher at $30{\pm}0.5psu$ than seawater. Thinned epithelial layers and expansion of lymph sinus were observed less than $30{\pm}0.5psu$ or below $6^{\circ}C$ of temperature. This result shows that the optimum level of water temperature and salinity is considered to be $6-8^{\circ}C$ and more than $30{\pm}0.5psu$ respectively.

키워드

참고문헌

  1. Almada-villela, P.C. (1984) The effects of reduced salinity on the growth of small Mytilus edulis. Journal of Marine Biological Association United Kingdom, 64: 171-182. https://doi.org/10.1017/S0025315400059713
  2. Bayne, B.L., Brown, D.A., Burns, K., Dixon, D.R., Ivanovici, A., Livingstone, D.R., Lowe, D.M., Moore, M.N., Stebbing, A.R.D. and Widdows, J. (1985) The effects of stress and pollution on marine animals (Praeger special studies). Praeger Scientific, Westport, C.T. pp. 9.
  3. Berka, R. (1986) The transport of live fish. A review. EIFAC Technical Report, 48, FAO, Rome, pp. 52.
  4. Bohle B. (1972) Effects of adaptation to reduced salinity on filtration activity and growth of mussels (Mytilus edulis). Journal of Experimental Marine Biological Ecology, 10: 41-49. https://doi.org/10.1016/0022-0981(72)90091-3
  5. Chen, J.C. and Chen, W.C. (2000) Salinity tolerance of Haliotis diversicolor supertexta at different salinity and temperature levels. Aquaculture, 181: 191-203. https://doi.org/10.1016/S0044-8486(99)00226-4
  6. Chen, J.C. and Chen, W.C. (1999) Temperature tolerance of Haliotis diversicolar supertexta at different salinity and temperature levels. Comparative Biochemistry and Physiology Part A, 124: 73-80.
  7. Cho, Y.J., Kim, Y.Y., Lee, N.G., and Choi, Y.J. (1994) Basic studies on developing equipment for waterless transportation of live fish, Bulletin of the Korean Fisheries Society, 27(5): 501-508.
  8. Chung, K.S. (1980) Cold anesthesia of tropical fish. Bulletin of the Japanese Society of Scientific Fisheries, 46: 391-392. https://doi.org/10.2331/suisan.46.391
  9. FAO. (2012) The state of world fisheries and aquaculture 2012. Retrieved from http://www.FAO.org./docrep/016/i2727e/i2727e01.Pdf
  10. Ferreira, J., Schoonbee, T. and Smith, G.L. (1984) The use of benzocaine hydrochloride as an aid in the transport of fish. Aquaculture, 42: 169-174. https://doi.org/10.1016/0044-8486(84)90364-8
  11. Froese, R. (1988) Insulating properties of Styrofoam boxes used for transporting live fish. Aquaculture, 159: 283-292.
  12. Hand, S.C. and Stickle, W.B. (1977) Effects of tidal fluctuations of salinity on pericardial fluid composition of the American Crassostrea virginica. Marine Biology, 42: 259-271. https://doi.org/10.1007/BF00397750
  13. Hatting, J. (1977) The effect of tricanemethanesulphonate (MS222) on the microhaematocrit of fish blood. Journal of fish biology, 10: 453-455. https://doi.org/10.1111/j.1095-8649.1977.tb04077.x
  14. Kim, Y.Y. and Cho, Y.J. (1992) Early changes after death of plaice Paralichthys olivaceus muscle 1. Relationship between early changes after death and temperature dependency. Bulletin of the Korean Fisheries Society, 25: 189-196.
  15. Kim, T.H., Kim, K.J., Choe, M.K. and Yeo, I.K. (2006) Physiological changes of juvenile abalone, Haliotis sieboldi exposed to acute water-temperature stress, Journal of Aquaculture, 19: 77-83.
  16. Lim, L.C., Dhert, P. and Sorgeloos, P. (2003) Recent developments and improvements in ornamental fish packaging systems for air transport. Aquaculture Research, 34: 923-935. https://doi.org/10.1046/j.1365-2109.2003.00946.x
  17. Magnuson, J.J., Crowder, L.B. and Medrick, P.A. (1979) Temperature as an ecological resource. American Zoology, 19: 331-334.
  18. MOF. (2013) Statistic Database for Fishery Production Survey. Retrieved from http://stat.mof.go.kr/portal/cate/partStat.do.
  19. NFRDI (2011) http://portal.nfrdi.re.kr/bbs?id=cultureliving&flag=lis&boardIdx=4&sv=FC_B.
  20. Pierce, S.K. and Greenberg, M.J. (1972) The nature of cellular volume regulation in marine bivalves. Journal of Experimental Biology, 57: 681-692.
  21. Piper, R.G., McElwain, I.B., Orme, L.E., McCraren, J.P., Fowler, L.G. and Leonard, J.R. (1982) Fish Hatchery Management. American Fisheries Society, Bethesda, MD. pp. 517.
  22. Reynolds, W.W. and Casterin, M.E. (1979) Behavioral thermoregulation and the 'final preferendum' paradigm. American Zoology, 19: 211-224.
  23. Ryland, J.S. (1990) A circadian rhythm in the tropical ascidian Diplosoma virens (Ascidiacea: Didemnidae). Journal of Experimental Marine Biological Ecology, 138: 217-225. https://doi.org/10.1016/0022-0981(90)90168-C
  24. Sakai, S. (1962) Ecological studies on the abalone Haliotis discus hannai Ino (4). Bulletin of the Japanese Society of Scientific Fisheries, 28: 899-904. https://doi.org/10.2331/suisan.28.899
  25. Sastry, A.N. and Vargo, S.L. (1977) Variations in the physiological response of crustacean larvae to temperature. In: Physiological response of marine biota to pollutants edited by Vernberg, F.J., Calabrese, A., Thurberg, F.P., Vernberg W.B., Academic Press, New York., pp. 410-424.
  26. Shin, Y.K., Jun, J.C., Im, J.H., Kim, D.W., Son, M.H. and Kim, E.O. (2011) Physiological responses in abalone Haliotis discus hannai with different salinity. Korean Journal of Malacology, 27(4): 283-289. [in Korean] https://doi.org/10.9710/kjm.2011.27.4.283
  27. Shin, Y.K., Lee, W.C., Kim, D.W., Son, M.H., Jun, J.C., Kim, E.O. and Kim, S.H. (2012) Seasonal changes in physiology of the abalone Haliotis discus hannai reared from Nohwa Island on the south coast of Korea. Journal of Malacology, 28: 131-136. [in Korean] https://doi.org/10.9710/kjm.2012.28.2.131
  28. Singhagraiwan, T., Doi, M. and Sasaki, M. (1992) Salinity tolerance of juvenile donkey's ear abalone, Haliotis asinina Linne. Thailand Marine Fisheries Research Bulletin, 3: 71-77.
  29. Shumway, S. (1977) The effects of fluctuating salinity on the tissue water content of eight species of bivalve mollusks. Journal of Comperative Physiology, 116: 269-285. https://doi.org/10.1007/BF00689036
  30. Tucker, L.E. (1970) Effects of external salinity on Scutus breviculus (Gastropoda, Prosobranchia)-I. Body weight and blood composition. Comperative Biochemistry and Physiology, 36: 301-319. https://doi.org/10.1016/0010-406X(70)90011-3
  31. Widdows, J. (1985) The effects of fluctuating and abrupt changes in salinity on the performance of Mytilus edulis. In: Marine Biology of Polar Regions and Effects of stress on marine organism edited by Gray, J. S. and Christiansen, M.E., Wiley-Interscience, pp. 555-566.
  32. Yoon, S.M., Kim, C.B., Cho Y.C. and Hur, B.K.(1998) Study of the temperature container system for a live fish transportation, REF-J., 10(3): 343-347.
  33. Yoshikawa, H., Ueno, S. and Mitsuda, H. (1989) Short and long term cold-anesthesia in Carp. Nippon Suisan Gakkaishi, 55: 491-498. https://doi.org/10.2331/suisan.55.491

피인용 문헌

  1. 적정 수송 조건하의 활어용 컨테이너 내 참전복(Haliotis discus hannai)의 생존 및 생리 변화 구명 vol.51, pp.3, 2014, https://doi.org/10.5657/kfas.2018.0238