DOI QR코드

DOI QR Code

굴, Crassostrea gigas 부착기 유생의 부착에 미치는 신경전달물질종의 영향

The Effect of Neuroactive Compounds on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae

  • 허영백 (국립수산과학원 남동해수산연구소) ;
  • 조규태 (국립수산과학원 남동해수산연구소) ;
  • 변순규 (국립수산과학원 남동해수산연구소) ;
  • 문태석 (국립수산과학원 남동해수산연구소)
  • Hur, Youngbaek (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Jo, Qtae (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Byun, Soongyu (Southeast Sea Fisheries Research Institute, NFRDI) ;
  • Mun, Tesek (Southeast Sea Fisheries Research Institute, NFRDI)
  • 투고 : 2014.11.12
  • 심사 : 2014.12.24
  • 발행 : 2014.12.31

초록

굴 부착기 유생의 부착 유인 효과를 조사하기 위하여 6종류(serotonin, ${\gamma}$-amino butyric acid, L-3,4-dihydroxyphenylalanine, norepinephrine, epinephrine, methyl bromide)의 신경전달물질을 채묘기질에 직접 처리하여 굴 부착기 유생의 부착 유인 효과를 조사하였다. 조사결과 평균 채묘율는 각각 $29.1{\pm}2.2%$, $29.1{\pm}2.2%$, $19.2{\pm}2.1%$, $11.0{\pm}1.2%$, $15.2{\pm}0.9%$$42.7{\pm}2.7%$로 MB 처리구에서 가장 높은 결과를 보였고, norepinephrine 처리구에서 유의적으로 가장 낮은 결과를 보였다 (P < 0.05). 채묘기질 $cm^2$당 부착밀도와 부착빈도는 ${\gamma}$-amino butyric acid와 methyl bromide 처리구에서 각각 $1.97{\pm}1.42$$2.37{\pm}1.86$ 마리/$cm^2$로 가장 높은 부착밀도를 보였다 (P < 0.05). 본 실험결과 굴 인공종묘배양장 등에서 부착기 유생의 부착요율을 높이는데, ${\gamma}$-amino butyric acid와 methyl bromide를 이용하면 효과적일 것으로 보인다.

We determined the effects of neuroactive compounds known as synthetic larval settlement inducers on the settlement of the Pacific oyster C. gigas pediveliger on the larval collector. Six types of the inducers, serotonin (5-HT), ${\gamma}$-amino butyric acid (GABA), L-3,4-dihydroxyphenylalanine (L-DOPA), norepinephrine, epinephrine and methyl bromide (MB) were tested. All the chemicals induced larval settlement, MB being the most effective with settlement rate of $42.7{\pm}2.7%$, followed by GABA ($35.4{\pm}2.0%$), 5-HT ($29.1{\pm}2.2%$), L-DOPA ($19.2{\pm}2.1%$), epinephrine ($15.2{\pm}0.9%$), and norepinephrine ($11.0{\pm}1.2%$). The chemicals ${\gamma}$-amino butyric acid and methyl bromide were also better in terms of settled density on the collector with their respective density of $1.97{\pm}1.42$ and $2.37{\pm}1.86ind/cm^2$, reminiscent of being most effective candidates for a larval settlement inducer in the oyster hatchery.

키워드

참고문헌

  1. Alfaro, A.C., Young, T., Ganesan, A.M. (2011) Regulatory effects of mussel (Aulacomya maoriana Iredale 1915) larval settlement by neuroactive compounds, amino acids and bacterial biofilms. Aquaculture, 322-323: 158-168. https://doi.org/10.1016/j.aquaculture.2011.08.038
  2. Andrews, W.R., Targett, N.M. and Epifanio, C.E. (2001) Isolation and characterization of the metamorphic inducer of the common mud crab, Panopeus herbstii. Journal of Experimental Marine Biology and Ecology, 261: 121-134. https://doi.org/10.1016/S0022-0981(01)00268-4
  3. Baloun, A.J., Morse, D.E. (1984) Ionic control of settlement and metamorphosis in larval Haliotis rufescens (Gastropoda). Biology Bulletin, 167: 124-138. https://doi.org/10.2307/1541342
  4. Barlow, L.A. (1990) Electrophysiological and behavioral responses of larvae of the red abalone (Haliotis rufescens) to settlement-inducing substances. Bulletin of Marine Science, 46: 537-554.
  5. Beiras, R., Widdows, J. (1995) Induction of metamorphosis in larvae of the oyster Crassostrea gigas using neuroactive compounds. Marine Biology, 123: 327-334. https://doi.org/10.1007/BF00353624
  6. Bonar, D.B., Coon, S.L., Walch, M., Weiner, R.M. and Fitt, W. (1990) Control of oyster settlement and metamorphosis by endogenous and exogenous chemical cues. Bulletin of marine Science, 46: 484-498.
  7. Coon, S.L., Bonar, D.B. and Weiner, R.M. (1985). Induction of settlement and metamorphosis of the Pacific oyster, Crassostrea gigas (Thunberg), by L-DOPA and catecholamines. Journal of Experimental Marine Biology and Ecology, 94: 211-221 https://doi.org/10.1016/0022-0981(85)90059-0
  8. Coon, S.L., Bonar, D.B., Weiner, R.M. (1986) Chemical production of clutchless oyster spat using epinephrine and norepinephrine. Aquaculture, 58: 255-262. https://doi.org/10.1016/0044-8486(86)90090-6
  9. Coon, S.L., Fitt, W.K., Bonar, D.B. (1990a). Competence and delay of metamorphosis in the Pacific oyster Crassostrea gigas. Marine Biology, 106(3): 379-387. https://doi.org/10.1007/BF01344316
  10. Coon, S.L., Walch, M., Fitt, W.K., Weiner, R.M., Bonar, D.B. (1990b) Ammonia induces settlement behavior in oyster larvae. The Biological Bulletin, 179(3): 297-303. https://doi.org/10.2307/1542321
  11. Couper, J.M., Leise, E.M. (1996) Serotonin injections induce metamorphosis in larvae of the gastropod mollusc Ilyanassa obsoleta. Biology Bulletin, 191: 178-186. https://doi.org/10.2307/1542921
  12. Crisp, D.J. (1984) Overview of research on marine invertebrate larvae. In: Grant, P.T. and Mackie, A.M. Eds., Chemoreception in Marine Organisms, vol. 1. 177-265. Academic Press, London.
  13. Doroudi, M.S. and Southgate, P.C. (2002) The effect of chemical cues on settlement behaviour of blacklip pearl oyster (Pinctada margaritifera) larvae. Aquaculture, 209: 117-124. https://doi.org/10.1016/S0044-8486(01)00736-0
  14. Faimali, M., Garaventa, F., Terlizzi, A., Chiantore, M. and Cattaneo-Vietti, R. (2004) The interplay of substrate nature and biofilm formation in regulating Balanus amphitrite Darwin, 1854 larval settlement. Journal of Experimental Marine Biology and Ecology, 306: 37-50. https://doi.org/10.1016/j.jembe.2003.12.019
  15. Fang, Q., Lin, B.S., Fang, Y.Q. (2001) Induction of larval settlement and metamorphosis of two oysters Crassostrea gigas and Ostrea cucullata by some chemicals. Journal of Oceanography Taiwan Strait, 20(1): 20-26.
  16. Ganesan. A.M., Alfaro A.C., Brooks J.D. and Higgins C.M. (2010) The role of bacterial biofilms and exudates on the settlement of mussel (Perna canaliculus) larvae. Aquaculture, 306: 388-392. https://doi.org/10.1016/j.aquaculture.2010.05.007
  17. Gao, R.C., Liu, W.B. (2006) Induction of larval settlement and metamorphosis of Coelomactra antiquata using some chemicals. Journal of Fisheries China, 30(5): 597-602.
  18. Garcia-Lavandeira, M., Silva, A., Abad, M., Pazos, A.J., Sanchez, J.L., Perez-Paralle, M.L. (2005) Effects of GABA and epinephrine on the settlement and metamorphosis of the larvae of four species of bivalve molluscs. Journal of Experimental Marine Biology and Ecology, 316: 149-156. https://doi.org/10.1016/j.jembe.2004.10.011
  19. Grant, M.N., Meritt, D.W., Kimmel, D.G. (2013) Chemical induction of settlement behavior in larvae of the eastern oyster Crassostrea virginica (Gmelin). Aquaculture, 402-403: 84-91. https://doi.org/10.1016/j.aquaculture.2013.03.031
  20. Greene, J.K., Grizzle, R.E., 2005. Oyster (Crassostrea virginica Gmelin) restoration studies in the Great Bay estuary, New Hampshire. Final Report for NOAA Award Number NA03NOS4200060..
  21. Hadfield, M.G., 1978. Metamorphosis in marine molluscan larvae: an analysis of stimulus and response. In: Chia, F.S. and Rice, M.E. Eds, Settlement and Metamorphosis of Marine Invertebrate Larvae. 165-175. Elsevier, New York.
  22. Hadfield, M.G. and Paul, V.J. (2001). Natural chemical cues for settlement and metamorphosis of marine-invertebrate larvae. In: McClintock, J.B., Baker, B.J. (Eds.), Marine Chemical Ecology. 431-461. CRC press, New York.
  23. Henderson, B.A. (1983) Handling and Remote Setting Techniques for the Pacific oyster larvae, Crassostrea gigas. Master's thesis, Department of Fisheries and Wildlife, 37. Oregon State University. OR
  24. Hur, Y.B., Min, K.S., Kim, T.E., Lee, S.J. and Hur, S.B. (2008) Larvae growth and biochemical composition change of the Pacific oyster Crassostrea gigas, larvae during artificial seed production. Journal of aquaculture, 21: 203-212.
  25. Jeon, C.Y., Hur Y.B. and Cho, K.C. (2013). The Effect of Water Temperature and Salinity on Settlement of Pacific Oyster, Crassostrea gigas Pediveliger Larvae. Korean Journal of Malacology, 28: 21-28. https://doi.org/10.9710/kjm.2012.28.1.021
  26. Jensen, R.A., Morse, D.E., Petty, R.L. and Hooker, N. (1990) Artificial induction of larval metamorphosis by free fatty acids. Marine Ecological Progress of Service, 67: 55-71. https://doi.org/10.3354/meps067055
  27. Johnson, C.R., Muir, D.G. and Reysenbach, A.L. (1991) Characteristic bacteria associated with surfaces of coralline algae: a hypothesis for bacterial induction of marine invertebrate larvae. Marine Ecological Progress of Service, 74: 281-294. https://doi.org/10.3354/meps074281
  28. Kang, K.H., Kim, B.H., Kim, J.M. 2004. Induction of larval settlement and metamorphosis of the abalone, Haliotis discus hannai larvae using bromomethane and potassium chloride. Aquaculture, 230: 249-259. https://doi.org/10.1016/S0044-8486(03)00440-X
  29. Keough, M.J. and Raimondi, P.T. (1996) Responses of settling invertebrate larvae to bioorganic films: Effects of large-scale variation in films. Journal of Experimental Marine Biology and Ecology, 207: 59-78. https://doi.org/10.1016/S0022-0981(96)02632-9
  30. Leise, E.M., Thavaradhara, K., Durham, N.R., Turner, B.E. (2001) Serotonin and nitric oxide regulate metamorphosis in the marine snail Ilyanassa obsoleta. American Zoologist, 41: 258-267. https://doi.org/10.1668/0003-1569(2001)041[0258:SANORM]2.0.CO;2
  31. Leitz, T. and Wagner, T. (1993) The marine bacterium Alteromonas espejiana induces metamorphosis of the hydroid Hydractinia echinate. Marine Biology, 115: 173-178. https://doi.org/10.1007/BF00346332
  32. Li, H.F., Lin, W., Zhang, G., Cai, Z.H., Cai, G.P., Chang, Y.Q., Xing, K.Z. (2006) Enhancement of larval settlement and metamorphosis through biological and chemical cues in the abalone Haliotis diversicolor suertexta. Aquaculture, 258(1-4): 416-423. https://doi.org/10.1016/j.aquaculture.2006.04.013
  33. Maki, J.S., Rittschof, D., Schmidt, A.R., Snyder, A.G. and Mitchell, R. (1989) Factors controlling attachment of bryozoan larvae: a comparison of bacterial films and unfilmed surfaces. Biological Bulletin, 177: 295-302. https://doi.org/10.2307/1541944
  34. Martinez, G., Aguilera, C. and Campos, E.O. (1999) Induction of settlement and metamorphosis of the scallop Argopecten purpuratus Lamarck by excess K+ and epinephrine: energetic costs. Journal of Shellfish Research, 18: 41-46.
  35. Mesias-Gansbiller, C., Silva, A., Maneiro, V., Pazos, A., Sanchez, J.L., perez-Paralle, M.L. (2013) Effects of chemical cues on larval settlement of the flat oyster (Ostrea edulis L.): A hatchery approach. Aquaculture, 376-379: 85-89. https://doi.org/10.1016/j.aquaculture.2012.11.022
  36. Min, K.S., Chang, Y.J., Park, D.W., Jung, C.G., Kim, D.H. and Kim, G.H. (1995) Studies on rearing conditions for mass seedling production in Pacific oyster larvae, Crassostrea gigas (Thunberg). Bulletin of National Fisheries Research and Development Agency, 49: 91-111.
  37. Min. S.K., Kim, T.I., Hur, S.B., Hur, Y.B., Chun, C.Y. and Kim, D.H. (1999) Growth and survival of the artificial and natural seeding in the Pacific oyster, Crassostrea gigas (Thunberg). Bulletin of National Fisheries Research and Development Agency, 57: 43-53.
  38. Morse, D.E., Hooker, N., Duncan, H., Jensen, L. (1979) ${\gamma}$-Aminobutyric acid, a neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis. Science, 204: 407-410. https://doi.org/10.1126/science.204.4391.407
  39. Morse, D.E. (1990) Recent progress in larval settlement and metamorphosis: closing the gaps between molecular biology and ecology. Bulletin of marine Science, 46: 465-483.
  40. Murthy, P.S., Venugopalan, V.P., Nair, K.V.K., Subramoniam, T. (2009) Larval settlement and surfaces: implications in development of antifouling strategies. In: Flemming, H.C., Murthy, P.S., Venkatesan, R., Cooksey, K. (Eds.), Marine and Industrial Biofouling. Springer, Berlin, pp. 233-263
  41. Najiah, M., Nadirah, M., Lee, K.L., Lee, S.W., Wendy, W., Ruhil, H.H., Nurul, F.A. (2008) Bacteria flora and heavy metals in cultivated oysters Crassostrea iredalei of Setiu Wetland, East Coast Penincular Malaysia. Veterinary Research Communications, 32: 377-381. https://doi.org/10.1007/s11259-008-9045-y
  42. Nosho, T.Y., Chew, K.K. (1991) Remote setting and nursery culture for shellfish growers. Washington Sea Grant Workshop Record (68 pp.).
  43. Okano, K., Shimizu, K., Satuito, C.G., Fusetani, N. (1996) Visualization of cement exocytosis in the cypris cement gland of the barnacle Megabalanus rosa. Journal of Experimental Biology, 199: 2131-2137.
  44. Osborne, N.N. (1971) Occurrence of GABA and taurine in the nervous systems of the dogfish and some invertebrates. Comparative and General Pharmacology, 2: 433-438. https://doi.org/10.1016/0010-4035(71)90040-1
  45. Pawlik, J.R. (1990) Natural and artificial induction of metamorphosis of Phragmatopoma lapidosa californica (Polychaeta: Sabellariidae), with a critical look at the effects of bioactive compounds on marine invertebrate larvae. Bulletin of Marine Science, 46: 512-536.
  46. Pawlik, J.R. (1992) Chemical ecology of the settlement of benthic marine invertebrate. Oceanogr. Marine Annual Review, 30: 273-335.
  47. Qian, P.Y. (1999) Larval settlement of polychaetes. Hydrobiologia, 402: 239-253. https://doi.org/10.1023/A:1003704928668
  48. Rodriguez, S.R., Ojeda, F.P. and Inestrosa, N.C. (1993) Settlement of benthic marine invertebrates. Marine Ecological Progress of Service, 97: 193-207. https://doi.org/10.3354/meps097193
  49. Sanchez-Lazo, C., Martinez-Pita, I., Young, T., Alfaro, A.C. (2012) Induction of settlement in larvae of the mussel Mytilus galloprovincialis using neuroactive compounds. Aquaculture, 344-349: 210-215. https://doi.org/10.1016/j.aquaculture.2012.03.021
  50. Schousboe, A., Waagepetersen, H.S. (2010) Serotonin (5-hydroxytrytamine; 5-HT): receptors. In: Squire, L.R. (Ed.), Encyclopedia of Neuroscience 4: Neurotransmitters and Receptors. Science Press, Beijing, pp. 168-172.
  51. Tamburri, M.N., Zimmer-Faust, R.K. and Tamplin, M.L. (1992) Natural sources and properties of chemical inducers mediating settlement of oyster larvae: a re-examination. Biological Bulletin, 183: 327-338. https://doi.org/10.2307/1542218
  52. Taniguchi, K., Kurata, K., Maruzoi, T., Suzuki, M., (1994) Dibromomethane, a chemical inducer of larval settlement and metamorphosis of the sea urchin, Strongylocentrotus nudus. Fish. Sci., 60: 795-796. https://doi.org/10.2331/suisan.60.795
  53. Teh, C.P., Zulfigar, Y., Tan, S.H. (2012) Epinephrine and l-DOPA promote larval settlement and metamorphosis of the tropical oyster, Crassostrea iredalei (Faustino, 1932): An oyster hatchery perspective. Aquaculture, 338-341: 260-263. https://doi.org/10.1016/j.aquaculture.2012.01.014
  54. Todd, C.D. (1985) Settlement-timing hypothesis: reply to Grant and Williamson. Marine Ecological Progress of Services, 23: 197-202. https://doi.org/10.3354/meps023197
  55. Yang, J.L., Satuito, C.G., Bao, W.Y., Kitamura, H. (2008) Induction of metamorphosis of pediveliger larvae of the mussel Mytilus galloprovincialis Lamarck, 1819 using neuroactive compounds, KCl, NH4Cl and organic solvents. Biofouling, 24: 461-470. https://doi.org/10.1080/08927010802340309
  56. Yang, J.L., Li, Y.F., Satuito, C.G., Bao, W.Y., Kitamura, H. (2011) Larval metamorphosis of the mussel Mytilus galloprovincialis Lamarck, 1819 in response to neurotransmitter blockers and tetraethylammonium. Biofouling, 27: 193-199. https://doi.org/10.1080/08927014.2011.553717
  57. Yang, J.L., Li, S.H., Li, Y.F., Liu, Z.W., Liang, X., Bao, W.Y., Li, J.L. (2013) Effects of neuroactive compounds, ions and organic solvents on larval metamorphosis of the mussel Mytilus coruscus. Aquaculture, 396-399: 106-112. https://doi.org/10.1016/j.aquaculture.2013.02.039
  58. Yu, X., He, W., Gu, J.D., He, M. and Yan, Y. (2008) The effect of chemical cues on settlement of pearl oyster Pinctada fucata martensii (Dunker) larvae. Aquaculture, 277: 83-91. https://doi.org/10.1016/j.aquaculture.2008.02.010
  59. Walch, M., Weiner, R.M., Colwell, R.R. and Coon, S.L. (1999) Use of l-DOPA and soluble bacterial products to improve set of Crassostrea virginica (Gmelin, 1791) and C. gigas (Thunberg, 1793). Journal of Shellfish Research, 18: 133-138.
  60. Wassnig, M., Southgate, P.C. (2012) Effects of settlement cues on behaviour and substrate attachment of hatchery reared winged pearl oyster (Pteria penguin) larvae. Aquaculture, 344-349: 216-222. https://doi.org/10.1016/j.aquaculture.2012.03.020
  61. Weiner, R.M., Walch, M., Labare, M.P., Bonar, D.B. and Colwell, R.R. (1989) Effect of biofilms of the marine bacterium Alteromonas colwelliana (LST) on set of the oysters Crassostrea gigas (Thunberg, 1793) and C. virginica (Gmelin, 1791). Journal of Shellfish Research, 8: 117-123.
  62. Zhao, B. and Qian, P.Y. (2002) Larval settlement and metamorphosis in the slipper limpet Crepidula onyx (Sowerby) in response to conspecific cues and the cues from biofilm. Journal of Experimental Marine Biology and Ecology, 269: 39-51. https://doi.org/10.1016/S0022-0981(01)00391-4
  63. Zhao, B., Zhang, S., Qian, P.Y. (2003) Larval settlement of the silver-or goldlip pearl oyster Pinctada maxima (Jameson) in response to natural biofilms and chemical cues. Aquaculture, 220: 883-901. https://doi.org/10.1016/S0044-8486(02)00567-7
  64. Zimmer-Faust, R.K. and Tamburri, M.N. (1994) Chemical identity and ecological implications of a waterborne, larval settlement cue. Limnology and Oceanography, 39: 1075-1087. https://doi.org/10.4319/lo.1994.39.5.1075