DOI QR코드

DOI QR Code

Genetic characteristics of the novel insect pathogenic Bacillus thuringiensis subsp. aizawai strain

새로운 곤충병원성 Bacillus thuringiensis subsp. aizawai 균주의 유전학적 특성

  • Seo, Mi Ja (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Youn, Young Nam (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Yu, Yong Man (Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University) ;
  • Kim, Ki Su (Bio Matertial Deptment, CHAMEDITECH, CO.)
  • 서미자 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 윤영남 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 유용만 (충남대학교 농업생명과학대학 응용생물학과) ;
  • 김기수 ((주)차메디텍 생물소재팀)
  • Received : 2014.10.28
  • Accepted : 2014.12.15
  • Published : 2014.12.31

Abstract

For identifying the plasmid DNA coding cry gene of Bacillus thuringiensis subsp. aizawai KB098 with high insecticidal activity against Spodoptera exigua, mutant isolates with no crystal protein were produced by $42^{\circ}C$ incubation condition and then mutant plasmid DNA band patterns were compared with those of KB098. KB098 isolates had 4 cry genes, cry1Aa, cry1Ab, cry1C, cry1D, and also had been found seven plasmid DNA. Though the SDS-PAGE experiment, it was confirmed that mutant didn't produce 130~145kDa protein band involved in bipyramidal shape crystal. Also, five mutant isolates had no cry genes coding plasmid DNA in PCR. In result of comparison the plasmid DNA of KB098 and 5 mutant isolates, only 1 plasmid DNA band was left out in mutant plasmid DNA pattern, so that the missing band was extracted from the gel. The missing(disappeared) plasmid DNA was the largest molecular size among the 7 plasmid DNA of KB098 and it was also confirmed this plasmid DNA had all 4 cry genes through PCR.

Keywords

References

  1. Abdullah MAF, Moussa S, Taylor MD, Adang MJ. 2009. Manduca sexta (Lepidoptera: Sphingidae) cadherin fragments function as synergists for Cry1A and Cry1C Bacillus thuringiensis toxins against noctuid moths Helicoverpa zea, Agrotis ipsilon and Spodoptera exigua. Pest Management Science 65:1097-1103. https://doi.org/10.1002/ps.1798
  2. Aronson AI, Beckman W, Dunn P. 1986. Bacillus thuringiensis and related insect pathogens. Microbiological reviews 50:1-24.
  3. Bravo A, Gill SS, Soberon M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423-435. https://doi.org/10.1016/j.toxicon.2006.11.022
  4. Bravo A, Sarabia S, Lopez L, Ontiveros H, Abarca C, Ortiz A, Ortiz M, Lina L, Villalobos FJ, Pena G, Nunez-Valdez ME, Soberon M, Quintero R. 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Applied and environmental microbiology 64:4965-4972.
  5. Chankhamhaengdecha ST, Tantichodok A, Panbangred T. 2008. Spore stage expression of a vegetative insecticidal gene increase toxicity of Bacillus thuringiensis subsp. aizawai SP41 against Spodoptera exigua. Journal of Biotechnology 136:122-12. https://doi.org/10.1016/j.jbiotec.2008.05.013
  6. Gonzalez JM, Brown BJ, Carlton BC. 1982. Transfer of Bacillus thuringiensis plasmids coding for delta-endotoxin among strains of B. thuringiensis and B. cereus. PNAS November 79(22):6951-6955. https://doi.org/10.1073/pnas.79.22.6951
  7. Ibarra JE, Federici BA. 1986. Isolation of a Relatively Nontoxic 65-Kilodalton Protein Inclusion from the Parasporal Body of Bacillus thuringiensis subsp. israelensis. Journal of Bacteriology 165:527-533.
  8. Iizuka T, Arakida M, Kikuta H, Isida K, Uyeda I, Shikata E. 1989. Electron microscopic observation of the plasmid DNA bearing insecticidal crystal protein gene in Bacillus thuringiensis. Journal of Seric Science Japan 58(6):448-456.
  9. Jung SY, Seo MJ, Youn YN, Yu YM. 2010. Characteristics of $\delta$-Endotoxin protein produced from Bacillus thuringiensis subsp. Kurstaki KB099 isolate showing High Bioactivity against Spodoptera litura. The korean journal of pesticide science 14(4):446-455.
  10. Jurat-Fuentes JL, Adang MJ. 2006. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. Journal of Invertebrate Pathology 92:166-171. https://doi.org/10.1016/j.jip.2006.01.010
  11. Kim CY, Kim SH, Kim YH, Kang SK. 1993. Determination of plasmids encoding crystal toxic protein gene in Bacillus thuringiensis var kurstaki HD-1. Korean Journal of seric science 35(2):120-128.
  12. Kim TH, Kim DA, Kim KS, Seo MJ, Youn YN, Yu YM. 2009. Characterization of Bacillus thuringiensis subsp. aizawai CAB109 isolate with bioactivities to Spodoptera litura and Spodoptera exigua (Lepidoptera: Noctuidae). Korean Journal of Applied Entomology 48(4):509-517. https://doi.org/10.5656/KSAE.2009.48.4.509
  13. Kronstad JW, Schnepf HE, Whiteley HR. 1983. Diversity of Locations for Bacillus thuringiensis crystal protein genes. Journal of bacteriology 154:419-428.
  14. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685. https://doi.org/10.1038/227680a0
  15. Lereclus D, Lecadet MM, Ribier J, Dedonder R, 1982. Molecular Relationships Among Plasmids of Bacillus thuringiensis: Conserved Sequences Through 11 Crystalliferous Strains. Mol Gen Genet 186:391-398. https://doi.org/10.1007/BF00729459
  16. Lereclus D, Ribiert J, Klier A, Menou G, Lecadet MM. 1984. A transposon-like structure related to the 6-endotoxin gene of Bacillus thuringiensis. The EMBO Journal 3(11):2561-2567.
  17. Mclinden JH, Sabourin JR, Clark BD, Gensler DR, Workman W E, Dean DH. 1985. Cloning and Expression of an Insecticidal k-73 Type Crystal Protein Gene from Bacillus thuringiensis var. kurstaki into Escherichia coli. Applied and environmental microbiology 50:623-628.
  18. Mommaerts V, Kris Jans K, Smagghe G. 2010. Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris). Pest Management Science 66(5):520-525. https://doi.org/10.1002/ps.1902
  19. Mun SH, Yoo CK, Oh HB, Seong WK, Chun JH, Yu JY, Lee S S. 2003. Genetic Diversity among virulent mega plasmids pXO1 and pXO2 of Bacillus anthracis isolated in korea. Journal of bacteriology and virology 33(4):253-264.
  20. Swiecicka I, Bideshi DK, Federici BA, 2008. Novel Isolate of Bacillus thuringiensis subsp. thuringiensis that produce a quasicuboidal crystal of cry1Ab21 toxic to larvae of Trichoplusia ni. Applied and environmental microbiology 74:923-930. https://doi.org/10.1128/AEM.01955-07
  21. Thammasittirong A and Attathom T. 2008. PCR-based method for the detection of cry genes in local isolates of Bacillus thuringiensis from Thailand. J. Inverteb. Patholo., 98:121-126. https://doi.org/10.1016/j.jip.2008.03.001
  22. Yang, Z, Chen H. Tang W, Hua H, Lin Y. 2011. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Management Science. 67:414-422. https://doi.org/10.1002/ps.2079
  23. Ye R, Huang H, Yang Z, Chen T, Liu L, Li X, Chen H, Lin Y. 2009. Development of insect-resistant transgenic rice with Cry1C-free endosperm. Pest Management Science 65:1015-1020. https://doi.org/10.1002/ps.1788
  24. Yousten AA. 1978. A method for the isolation of asporogenic mutants of Bacillus thuringiensis. Canada journal of microbiology 24:492-494. https://doi.org/10.1139/m78-081
  25. Yuan Y, Zheng D, Hu X, Cai Q, Yuan Z. 2010. Conjugative Transfer of Insecticidal Plasmid pHT73 from Bacillus thuringiensis to B. anthracis and Compatibility of This Plasmid with pXO1 and pXO2. Applied and environmental microbiology 76:468-473. https://doi.org/10.1128/AEM.01984-09