편광상이 고리 형태의 다파장 스위칭 가능한 1차 광섬유 유연 필터의 스펙트럼 특성

(Spectral Characteristics of Multiwavelength-Switchable First-Order Fiber Flexible Filter based on Polarization-Diversity Loop)

박경수*·김영호·이용육**

(Kyoungsoo Park · Youngho Kim · Yong Wook Lee)

Abstract

In this paper, a multiwavelength-switchable first-order fiber flexible filter is newly proposed, which is based on a polarization-diversity loop. The proposed filter consists of a polarization beam splitter, three half-wave plates(HWPs), and two high birefringent fibers(HBFs). The proposed filter has a good flexibility in adjusting relative angular difference between the principal axes of two HBFs by inserting an HWP between two HBFs. The first-order flat-top or narrow band transmission spectra and the zeroth-order transmission spectra, which had a channel spacing of ~ 0.8 nm, could be obtained by controlling the three HWPs, and, in particular, each of them could also be interleaved. In addition, zeroth-order transmission spectra with a channel spacing of ~ 0.8 nm could be flexibly converted into those with a channel spacing of ~ 0.4 nm through the control of three HWPs, and also be interleaved. The transmission characteristics of the proposed filter was theoretically analyzed and experimentally verified.

Key Words : Multiwavelength-Switchable, Flexible Filter, Polarization-Diversity Loop, Zeroth-Order

* 주저자 : 부경대학교 전기공학과

* Main author : Pukyong National University, School of Electrical Engineering ** Corresponding author : Pukyong National University, School of Electrical Engineering, Associate Professor Tel : 051-629-6323, Fax : 051-629-6305 E-mail : yongwook@pknu.ac.kr 접수일자 : 2014년 1월 29일 1차심사 : 2014년 2월 5일 심사완료 : 2014년 6월 20일

1. 서 론

사냑 간섭계(Sagnac interferometer) 구조에 복굴 절이 큰 광섬유(high birefringent fiber: 이하 HBF) 를 연결하여 제작한 다파장 광섬유 복굴절 필터 (multiwavelength fiber birefringence filter)들은 단순한 구조와 사용의 편의성, 다양한 파장 선택 특 성과 같은 여러 장점 때문에, 다파장 광섬유 레이저 (multiwavelength fiber laser), 고속 파장 분기 (high-speed wavelength routing), 광 레이블 스위

> Journal of KIIEE, Vol.28, No.8, August 2014 Copyright © 2014 KIIEE All right's reserved

^{**} 교신저자 : 부경대학교 전기공학과 부교수

칭(all-optical label switching), 그리고 광 펄스열 발생(optical pulse train generation)과 같은 여러 분 야에 응용되고 있다[1-3]. 이러한 다파장 복굴절 필 터에 광섬유 결합기(optical fiber coupler) 대신 편 광 빔 분배기(polarization beam splitter: 이하 PBS) 를 이용하여 편광상이 고리(polarization-diversity loop: 이하 PDL) 기반 다파장 광섬유 복굴절 필터를 제작하면 파장 인터리빙(wavelength interleaving) 을 포함하는 파장 스위칭 특성을 얻을 수 있는 장점 이 있다[4]. PDL 기반 필터에서는 HBF를 여러 개 사용하여 다양한 출력 스펙트럼을 얻을 수 있는 고 차 출력 함수를 만들 수 있는데, 이웃하는 HBF들의 주축(principal axis) 각도 간 차이가 나도록 연결하 여 구현하는 Solc형 필터와 이웃하는 HBF들의 길 이를 서로 다르게 연결하여 구현하는 Lyot형 필터 가 있다[5-7]. 기존의 PDL 기반 Solc형 1차 광섬유 필터는 동일한 길이의 두 HBF를 이용하여 주축 각 도가 서로 45° 차이가 나도록 연결시킨 형태로 제작 되었으며, 인터리빙이 가능한 평탄 대역 투과 (flat-top passband) 특성을 보고하였다[5]. 본 논문 에서는 기존 PDL 기반 Solc형 1차 광섬유 필터 구 조에서 두 HBF 사이에 반파장판(half-wave plate: 이하 HWP)을 삽입함으로써, 두 HBF 주축의 상대 적 각도차를 자유롭게 조절 가능한 PDL 기반 1차 광섬유 유연 다파장 필터를 제안한다. 제안된 필터 는 PBS와 세 개의 HWP, 그리고 두 개의 HBF로 구 성된다. HWP를 이용한 주축 간 각도차 조절을 통 해 채널 간격이 ~0.8nm인 필터에서 1차 평탄 대역 (flat-top band) 및 협대역(narrow band) 투과 스펙 트럼, 그리고 ()차(기본형) 투과 스펙트럼을 얻을 수 있었고, 이러한 다양한 모드의 모든 투과 스펙트럼 들에서 파장 인터리빙도 구현할 수 있었다. 추가적 으로, 필터에 사용된 HWP들을 조절하여 인터리빙 이 가능한 채널 간격 ~0.4nm의 0차 투과 스펙트럼 도 얻을 수 있었다. 제안된 필터의 투과 특성은 이론 적으로 분석되었으며, 이론적인 결과는 실험적으로 검증되었다.

2. 결과 분석 및 토의

2.1 제안된 필터의 구조

그림 1은 PDL 기반 1차 광섬유 유연 다파장 필터의 모식도를 보여주고 있으며, 제안된 필터는 PBS(OZ Optics), 6.55m 길이의 두 HBF(Fibercore), 세 개의 HWP(OZ Optics)로 구성된다. 여기서 필터 내부를 순 환하는 빛의 편광을 제어하기 위하여, 두 개의 HWP(HWP 1, HWP 3)를 사용하였고, HWP 2를 이용 해 두 HBF 주축 간 각도차를 조절할 수 있도록 하였 다. PBS로 빛을 입력시키면 서로 직교하는 수평 및 수 직 편광 성분들(horizontal and vertical polarization components)로 나뉘며, 각각 시계(clockwise: 이하 CW) 및 반시계(counter-clockwise: 이하 CCW) 방향 으로 필터 내부 광섬유를 순환하게 된다. 그리고 제안 된 필터의 투과 특성은 광대역 광원(Fiberlabs ASE-FL7004)과 광 스펙트럼 분석기(Yokogawa AQ6370C)를 이용해 측정하였다.

그림 1. PDL 기반 1차 광섬유 유연 다파장 필터의 모식도 Flg. 1. Schematic diagram of first-order fiber flexible multiwavelength filter based on PDL

2.2 필터 동작 원리 고찰

광섬유 복굴절 필터에서는 HBF의 복굴절로 인해 HBF 주축에 따라 정렬된 서로 직교하는 선형 편광 성

7

분들 간에 위상차(phase difference)가 발생하므로 간 섭 스펙트럼(interference spectrum)이 얻어지게 되며, 복굴절이 변할 경우 간섭 스펙트럼도 변하게 된다[4]. 그림 2는 제안된 필터에 입력된 빛이 출력단까지 진행 할 때 겪게 되는 광학요소들을 보여준다.

그림 2. 제안된 필터에서의 빛 진행 경로 Flg. 2. Propagating light path of proposed filter

PBS를 지나 CW 방향으로 진행하는 빛(수평 편광) 은 HWP 1, HBF 1, HWP 2, HBF 2, HWP 3를 순차적 으로 거친 후 PBS(수평 편광기 역할)를 지나 출력되 고, CCW 방향으로 진행하는 빛(수직 편광)은 CW 방 향의 역순인 HWP 3, HBF 2, HWP 2, HBF 1, HWP 1 을 지나 PBS(수직 편광기 역할)를 통과 후 출력된다. 이 때 PBS를 통과한 두 성분(CW 성분 및 CCW 성분) 의 빛은 각각 간섭 스펙트럼을 출력하게 되며, 두 간섭 스펙트럼은 서로 직교하는 편광 성분을 갖는 빛의 스 펙트럼들이므로 서로 중첩(superposition)되어 최종 출력으로 나타난다. 이러한 광학 요소들 중 HBF는 복굴절 요소로 작용하여 간섭 스펙트럼을 생성하게 되며, HWP들은 사냑 고리 형태인 PDL의 유효 복굴 절을 바꾸거나 광경로 내 빛의 편광을 바꿔 간섭 스펙 트럼을 변화시키는 역할을 한다. 이와 같이 모델링된 필터의 출력 특성을 존스 전달 행렬(Jones transfer matrix) T로 표현하면 아래의 식과 같이 나타낼 수 있다.

$$\begin{split} T &= T_{CW} + T_{CCW} \\ T_{CW} &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} T_{H\!\!3}(\theta_{h3}) \, T_{P2}(\theta_{p2}) \, T_{H2}(\theta_{h2}) \\ &\times T_{P\!\!1}(\theta_{p1}) \, T_{H\!\!1}(\theta_{h1}) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \end{split}$$

8

$$T_{CCW} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} T_{H1}(-\theta_{h1}) T_{P1}(-\theta_{p1}) T_{H2}(-\theta_{h2}) \\ \times T_{P2}(-\theta_{p2}) T_{H3}(-\theta_{h3}) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

여기서 T_{CW} 와 T_{CCW} 는 각각 CW 및 CCW 광 경로에 서의 존스 전달 행렬들을 나타내고 있다. T_{HA} , T_{H2} , T_{H3} , T_{P2} 는 각각 HWP 1, HWP 2, HWP 3, HBF 1, HBF 2의 존스 행렬을 뜻하며, Θ_{A} , Θ_{B} , Θ_{A} , Θ_{B} 은 각각 해당 광학요소들의 방위각(orientation angle)을 의미한다. 여기서 T로 표현되는 존스 전달 행렬을 기 반으로 아래와 같이 필터의 투과도(transmittance) t_{filter} 를 구할 수 있다.

$$\begin{split} t_{filter} &= \sin^2 \frac{\Gamma}{2} \cos^2 \frac{\Gamma}{2} [\cos 2(\theta_{h1} + \theta_{h2} - \theta_{h3} - \theta_{p1}) \\ &+ \cos 2(\theta_{h1} - \theta_{h2} - \theta_{h3} + \theta_{p2})]^2 \\ &+ [\cos^2 \frac{\Gamma}{2} \cos 2(\theta_{h1} - \theta_{h2} + \theta_{h3}) \\ &- \sin^2 \frac{\Gamma}{2} \cos 2(\theta_{h1} + \theta_{h2} + \theta_{h3} - \theta_{p1} - \theta_{p2})]^2 \end{split}$$

여기서 Γ = 2πBL/λ이며, B, L, λ는 각각 HBF의 복굴절, HBF 길이, 파장을 나타낸다. 그리고 θ_{h}, θ_{k} , *θ*⁸가 표 1과 같은 값을 가질 때 특정한 고차(1차) 또 는 기본형(0차) 스펙트럼을 얻을 수 있고, 각각의 스펙 트럼 형태에 따른 투과도는 수식 (1)에 나타내었다. tr 와 tr는 각각 평탄 대역 및 인터리빙된 평탄 대역 모드 의 투과도를 나타내고, t,와 t,,는 각각 협대역 및 인터 리빙된 협대역 모드에서의 투과도, 그리고 te와 ter는 각각 기본형 및 인터리빙된 기본형 모드에서의 투과 도를 나타내고 있으며, the와 their 각각 반주기 기본형 및 인터리빙된 반주기 기본형에서의 투과도를 나타낸 다. 표 1에서 알 수 있듯이 HBF의 방위각은 HWP 방 위각을 결정하는 데 영향을 주며, 두 HBF의 주축 간 상대적 각도차를 결정하는 것은 HWP라는 것을 알 수 있다. 여기서 세 개의 HWP 중 HWP 2만 조절하여 평 탄 대역 및 협대역 모드, 그리고 기본형 모드에서 인터 리빙 구현이 가능하고, 반주기 기본형 모드에서는 HWP 3만 조절하여 인터리빙을 구현할 수 있다.

Journal of KIIEE, Vol.28, No.8, August 2014

표 1. 세 HWP의 방위각에 따른 다양한 스펙트럼 모드 Table 1. Various spectral modes according to orientation angles of three HWPs (/ is an integer)

	Θ_{h1}	- Oh2	Θ_{h3}
평탄 대역 모드 (<i>t</i>)	$\frac{\Theta_{p1}/2^+}{(2i-5)\pi/16}$	$(\Theta_{p1}+\Theta_{p2})/2+$ $(-1)^{(i-1)}\pi/8$	$\frac{\Theta_{p2}/2^{+}}{(2i-5)\pi/16}$
인터리빙된 평탄 대역 모드 (<i>t_{ti}</i>)	$\theta_{pl}/2^+$ (2 <i>i</i> -5) $\pi/16$	$(\Theta_{p1}+\Theta_{p2})/2+$ $(-1)^{i}\pi/8$	$\theta_{p2}/2^+$ (2 <i>i</i> -5) $\pi/16$
협대역 모드 (<i>t_n</i>)	$\theta_{p1}/2+$ (2 <i>i</i> -3) $\pi/16$	$\frac{(\theta_{p1} + \theta_{p2})/2 +}{(-1)^{(i-1)} \pi/8}$	$\frac{\Theta_{p2}/2^{+}}{(2i-7)\pi/16}$
인터리빙된 협대역 모드 (<i>t_{n,i}</i>)	$\theta_{p1}/2^+$ (2 <i>i</i> -3) $\pi/16$	$(\Theta_{p1}+\Theta_{p2})/2+$ $(-1)^{i}\pi/8$	$\theta_{p2}/2+$ (2 <i>i</i> -7) $\pi/16$
기본형 모드 (<i>t_c</i>)	$\theta_{p1}/2^+$ (<i>i</i> -2) $\pi/8$	$(\Theta_{p1}+\Theta_{p2})/2+$ $(-1)^{(i-1)}\pi/8$	$\theta_{p2}/2+$ (<i>i</i> -3) $\pi/8$
인터리빙된 기본형 모드 (<i>t_{c,i}</i>)	$\theta_{pl}/2+$ (<i>i</i> -2) $\pi/8$	$(\Theta_{p1}+\Theta_{p2})/2+$ $(-1)^{j}\pi/8$	$\theta_{p2}/2+$ (<i>i</i> -3) $\pi/8$
반주기 기본형 모드 (<i>t_{hc}</i>)	$\theta_{p1}/2+$ (2 <i>i</i> -7) $\pi/8$	$(\Theta_{p1}+\Theta_{p2})/2$	$\theta_{p2}/2+$ (2 <i>i</i> -5) $\pi/8$
인터리빙된 반주기 기본형 모드 (<i>t_{hc,i}</i>)	$\theta_{pl}/2+$ (2 <i>i</i> -7) $\pi/8$	$(\theta_{p1}+\theta_{p2})/2$	$\theta_{p2}/2+$ (-2 <i>i</i> +5) $\pi/8$

$$t_{f} = -\frac{1}{4}\cos^{2}\Gamma + \frac{1}{2}\cos\Gamma + \frac{3}{4},$$
(1)

$$t_{f,i} = -\frac{1}{4}\cos^{2}\Gamma - \frac{1}{2}\cos\Gamma + \frac{3}{4},$$

$$t_{n} = \frac{1}{4}\cos^{2}\Gamma + \frac{1}{2}\cos\Gamma + \frac{1}{4},$$

$$t_{n,i} = \frac{1}{4}\cos^{2}\Gamma - \frac{1}{2}\cos\Gamma + \frac{1}{4},$$

$$t_{c} = \frac{1}{2}\cos\Gamma + \frac{1}{2}, \ t_{c,i} = -\frac{1}{2}\cos\Gamma + \frac{1}{2},$$

$$t_{hc} = \cos^{2}\Gamma, \ t_{hc,i} = 1 - \cos^{2}\Gamma.$$

2.3 이론적 스펙트럼 특성 분석

그림 4. 이론적으로 계산된 협대역 모드의 스펙트럼 Fig. 4. Calculated narrow band mode transmission spectra

그림 3과 4는 이론적으로 계산된 제안된 필터의 평 탄 대역 모드와 협대역 모드의 투과 스펙트럼들을 보 여주고 있으며, 실선 및 단속선은 각각의 경우에서 인 터리빙 관계에 있는 스펙트럼들을 나타낸다. 이러한 인터리빙 동작은 필터 내의 HWP 2를 조절함으로써 구현할 수 있다. 이론적인 계산에서 HBF의 복굴절은 4.58×10⁻⁴로 설정하였고, 필터의 채널 간격이 1550nm 중심 파장에서 ~0.8nm가 될 수 있도록 HBF의 길이는

9

6.55m로 설정하였다. 단 HWP의 파장 의존성과 필터 에 사용된 광학 요소들의 삽입 손실은 고려하지 않았 다. 대역폭(bandwidth) 비교를 위해 기본형(0차) 스펙 트럼(점선)도 그림 3과 그림 4에 함께 도시하였다. 평 탄 대역 모드의 스펙트럼은 기본형과 비교해서 투과 대역이 평탄하고 대역폭이 넓어진 것을 확인할 수 있 었고, 협대역 모드에서는 투과 대역 및 대역폭이 기본 형에 비해 더욱 좁아진 것을 알 수 있었다. 여기서 스 펙트럼의 대역폭을 정량적으로 분석하기 위해 -1dB 또는 -3dB 대역폭의 채널 간격(0.8nm)에 대한 비율을 성능 지수(figure of merit: 이하 FOM)로 정의하였다.

표 2. 제안된 필터의 동작 모드에 따른 이론적 FOM Table 2. Theoretical FOMs at various operation modes of proposed filter

	-1dB FOM(%)	-3dB FOM(%)
평탄 대역 모드	47.1	63.6
협대역 모드	21.4	36.4
기 본 형	30.0	50.0
반주기 기본형	30.0	50.0

각각의 모드에 따른 이론적 FOM을 표 2에 나타내었 다. -1dB 및 -3dB에서 평탄 대역 모드의 이론적 FOM 은 각각 47.1% 및 63.6%로 기본형에 비해 투과 대역폭 이 각각 17.1% 및 13.6%씩 넓어진 것을 볼 수 있고, 협 대역 모드에서는 각각 21.4% 및 36.4%로 투과 대역폭 이 각각 8.6% 및 13.6%씩 감소된 것을 확인할 수 있다. 제안된 필터의 또 다른 특성으로 그림 5와 6에 각각 도 시된 기본형 스펙트럼(채널 간격: 0.8nm)과 반주기 기본 형 스펙트럼(채널 간격: 0.4nm)이 있으며, 두 경우 모두 다파장에서 인터리빙 동작이 가능함을 알 수 있다. 반주 기 기본형의 이론적 FOM은 표 2에 나타나있으며, -1dB 및 -3dB FOM은 각각 30.0% 및 50.0%로 이 값은 기본형 의 이론적 FOM과 동일하다는 것을 알 수 있었다.

2.4 실험적 스펙트럼 특성 분석

10

그림 7, 그림 8, 그림 9는 각각 제작된 필터에서 측정 된 평탄 대역 모드, 협대역 모드, 기본형 모드의 스펙

트럼들을 보여주고 있다. 표 3은 실험적 스펙트럼들의 소거율(extinction ratio) 및 삽입 손실(insertion loss) 을 나타내며, 평탄 대역 모드, 협대역 모드, 기본형 모 드에서의 소거율은 각각 ~23dB, ~26dB, ~24dB로 측정되었다. 소거율은 이론적 스펙트럼에 비해 저하 되었는데, 이는 필터를 구성하는 광학 요소들의 연결 에 사용된 단일 모드 광섬유(single-mode fiber: 이하 SMF)에 존재하는 복굴절[8] 또는 두 HBF 길이의 재 단 오차에 의해 발생한 것으로 사료된다. 또한, 제작된

Journal of KIIEE, Vol.28, No.8, August 2014

필터의 삽입 손실은 평탄 대역 및 협대역 모드에서 각 각 ~5.35dB 및 ~5.36dB, 그리고 기본형 모드에서 ~5.45dB로 측정되었고, 이러한 삽입 손실은 PBS 및 세 HWP들의 삽입 손실(~2.2dB 및 ~2.4dB)과 SMF 와 HBF 간 광섬유 융착 접속 손실(~0.7dB), 그리고 SMF 간 광섬유 융착 접속 손실(~0.2dB) 등에 의해 야기된 것으로 판단된다.

표 3. 제안된 필터의 동작 모드에 따른 소거율 및 삽입 손실

Table 3. Experimental extinction ratio and insertion loss at various operation modes of proposed filter

	소거율(dB)	삽입 손실(dB)
평탄 대역 모드	~ 23	~5.35
협대역 모드	~ 26	~ 5.36
기본형	~24	~ 5.45
반주기 기본형	~ 19	~5.42

표 4. 제안된 필터의 동작 모드에 따른 실험적 FOM Table 4. Experimental FOMs at various operation modes of proposed filter

	-1dB FOM(%)	-3dB FOM(%)
평탄 대역 모드	~ 49.6	$\sim\!65.5$
협대역 모드	~23.3	~ 40.5
기본형	~ 35.8	~ 56.2
반주기 기본형	~30.5	~ 50.3

그림 8. 실험적으로 측정된 협대역 모드의 스펙트럼 Fig. 8. Measured narrow band mode transmission spectra

0차(기본형) 투과 스펙트럼 Fig. 9. Measured zeroth-order(conventional) transmission spectra with channel spacing

of 0.8nm

표 4는 제작된 필터의 스펙트럼에서 측정된 대역폭 값을 이용하여 계산된 실험적 -1dB 및 -3dB FOM을 나타내고 있다. 먼저 평탄 대역 모드에서 실험적 -1dB 및 -3dB FOM은 각각 ~49.6% 및 ~65.5%로, 이론적 FOM과 비교해서 각각 2.5% 및 1.9% 정도 큰 값을 나 타냈으며, 협대역 모드에서의 실험적 -1dB 및 -3dB FOM은 각각 ~23.3% 및 ~40.5%로 이론치에 비해 각각 1.9% 및 4.1% 정도 큰 값을 보였다. 또한, 기본형 모드의 실험적 -1dB 및 -3dB FOM은 각각 ~35.8% 및 ~56.2%로 이론적 FOM에 비해 각각 5.8% 및

Ð

6.2% 정도 큰 값을 나타내었다. 이론적 및 실험적 FOM 간에 발생되는 오차는 소거율이 감소하는 원인 과 동일한 요인에 의해 주로 영향을 받을 것으로 예상 되며, 추가적으로 HWP들의 파장 의존성도 이러한 오 차에 영향을 줄 것으로 판단된다. 측정된 스펙트럼들 의 채널 간격은 이론적 채널 간격(0.8nm)에서 1.5% 증가된 ~0.812nm로 측정되었는데, 이는 HBF의 재단 오차에 의한 결과로 사료된다.

그림 10은 제작된 필터에서 측정된 반주기 기본형 스펙트럼을 보여주고 있으며, 표 3에서와 같이 삽입 손실은 ~5.42dB로 측정되었고, 소거율은 ~19dB로 측정되었다. 또한 채널 간격은 ~0.406nm로 측정되었 으며, 이론적 채널 간격(0.4nm)에 비해 1.5% 정도 벗 어난 것을 확인하였다. 반주기 기본형 모드에서의 실 힘적 -1dB 및 -3dB FOM은 표 4에 제시된 것과 같이 각각 ~30.5%와 ~50.3%로 이론적 FOM에 비해 각각 0.5% 및 0.3% 정도 큰 값을 나타내었으며, 다른 모드 들에 비해 이론적 및 실험적 FOM 간 오차가 적은 것 을 확인할 수 있었다.

그림 10. 실업적으로 특징된 0.41ml의 재결 간격을 갖는 0차(기본형) 투과 스펙트럼 Fig. 10. Measured zeroth-order(conventional) transmission spectra with channel spacing of 0.4nm

3. 결 론

본 논문에서는 PDL을 이용하여 다파장 스위칭 가 능한 1차 광섬유 유연 필터를 제안하였다. 기존의 필

터가 두 HBF를 주축 간 45° 각도차로 고정 결합시킨 것에 비해, 제안된 필터는 두 HBF 사이에 HWP를 삽 입해 주축 간 상대적 각도차를 손쉽게 제어할 수 있도 록 하여 필터 내 HWP들의 방위각 조합에 따라 다양 한 형태의 스펙트럼을 구현하였다. 또한 제안된 필터 는 이전의 광섬유 필터들이 지니지 못한, 다양한 스펙 트럼들을 구현할 수 있는 유연성과 다파장 스위칭 특 성을 갖는다. 세부적으로 보면 PDL 내에 삽입된 HWP들의 적절한 조절을 통해 채널 간격이 ~0.8nm 인 평탄 대역 및 협대역 투과 스펙트럼, 기본형 투과 스펙트럼을 얻을 수 있었고, 각각의 투과 스펙트럼에 서 파장 인터리빙을 구현할 수 있었다. 또한 채널 간 격이 ~0.4nm이고, 파장 인터리빙이 가능한 반주기 기 본형 투과 스펙트럼도 얻을 수 있었다. 특히 이론적 및 실험적으로 얻은 스펙트럼들을 비교하기 위해, -1dB 및 -3dB FOM을 언급된 네 가지 필터 동작 모 드에서 각각 계산 및 측정을 수행하여 정량화시켰다. 결과적으로 채널 간격이 ~0.8nm인 0차와 1차 투과 스펙트럼들과 채널 간격이 ~0.4nm인 0차 투과 스펙 트럼을 다파장 대역에서 유연하게 선택가능하고, 제시 된 투과 스펙트럼들의 파장 인터리빙이 가능한 광섬 유 다파장 필터를 제안하였고, 제안된 필터는 기존의 1차 다파장 필터와 달리 필터 동작 모드에 있어 큰 유 연성을 제공할 수 있다.

감사의 글

이 논문은 2013년도 정부(미래창조과학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임. (2013R1A2A2A01068390)

References

- X. Fang, K. Demarest, H. Ji, C. Allen, and L. Pelz, "A subnanosecond polarization-independent tunable filter/ wavelength router using a Sagnac interferometer," IEE Photonics Technology Letters, vol. 9, pp. 1490–1492, 1997.
- [2] Z. Jia, M. Chen, K. Xu, Y. Dong, and S. Xie, "Performance analysis of optical label eraser," Optics Communications, vol. 205, pp. 265–269, 2002.
- [3] G. Zhu, Q. Wang, H. Chen, H. Dong, and N. K. Dutta, "High-quality optical pulse train generation at 80Gb/s

Journal of KIIEE, Vol.28, No.8, August 2014

using a modified regenerative-type mode-locked fiber laser," IEE Journal of Quantum Electronics, vol. 40, pp. 721-725, 2004.

- [4] Y. W. Lee, K. J. Han, B. Lee, and J. Jung, "Polarizationindependent all-fiber multiwavelength-switchable filter based on a polarization-diversity loop configuration," Optics Express, vol. 11, pp. 3359–3364, 2003.
- [5] Y. W. Lee, J. Jung, and B. Lee, "Wavelength-switchable flat-top fiber comb filter based on Solc type birefringence combination," Optics Express, vol. 13, pp. 1039–1048, 2005.
- [6] Y. W. Lee, H–T. Kim, and Y. W. Lee, "Second-order all-fiber comb filter based on polarization-diversity loop configuration," Optics Express, vol. 16, pp. 3871–3876, 2008.
- [7] C. S. Kim, and J. U. Kang, "Multiwavelength switching of Roman fiber ring laser incorporating composite polarization-maintaining fiber Lyot-Sagnac filter," Applied Optics, vol. 43, pp. 3151–3157, 2004.
- [8] Y. Kim, and Y. W. Lee, "Study on spectral deviation of high-order optical fiber comb filter based on polarization-diversity loop configuration," Optics Communications, vol. 301–302, pp. 159–163, 2013.

◇ 저자소개 ◇─

박경수(朴炅洙)

1990년 9월 27일생. 2009년 3월 부경대 학교 전기공학과 입학. 현재 부경대학교 전기공학과 재학.

김영호(金榮虎)

1986년 8월 8일생. 2011년 8월 부경대학교 전기공학과 졸업. 2013년 2월 부경대학교 대학원 전기공학과 졸업. 현재 한국전기 연구원 나노융합기술 연구센터 연구원.

이용욱(李鎔旭)

1975년 4월 25일생. 1998년 서울대학교 전기컴퓨터공학부 졸업. 2000년 서울대 학교 대학원 전기컴퓨터공학부 졸업(석사). 2004년 서울대학교 대학원 전기컴퓨터 공학부 졸업(박사). 현재 부경대학교 전기 공학과 부교수.