DOI QR코드

DOI QR Code

Inhibition of in Vitro Growth of Three Soil-borne Turfgrass Diseases by Antagonistic Bacteria from Composted Liquid Manure

가축분뇨액비의 길항미생물에 의한 토양전염성 병원균의 생육억제 효과

  • Ryu, Ju Hyun (Department of Horticultural Science & Biotechnology, Seoul National University) ;
  • Shim, Gyu Yul (Korea Turfgrass Research Institute) ;
  • Kim, Ki Sun (Department of Horticultural Science & Biotechnology, Seoul National University)
  • 류주현 (서울대학교 농업생명과학대학 식물생산과학부) ;
  • 심규열 (한국잔디연구소) ;
  • 김기선 (서울대학교 농업생명과학대학 식물생산과학부)
  • Received : 2014.05.09
  • Accepted : 2014.08.02
  • Published : 2014.12.31

Abstract

This study was conducted to test in vitro the antagonistic effect of composted liquid manure (CLM) against soil-borne turfgrass pathogenic fungi, Rhizoctonia solani AG-2-2 (IIIB) (brown patch), R. solani AG-2-2 (IV) (large patch), and Sclerotinia homoeocarpa (dollar spot) for environmentally friendly turfgrass management. CLMs were collected from 9 livestock excretion treatment facilities around the country including Gunwi (GW), Hapcheon (HC), Hoengseong (HS), Icheon (IC), Iksan (IS), Muan (MA), Nonsan (NS), and Yeoju (YJ). CLMs of IC, GW, and IS showed s ignificant (p < 0.05) mycelium growth inhibition that was 17.8%, 20.4%, and 48.0% against R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. A t otal of 110 bacterial isolates were obtained from the CLMs that showed antagonistic effects. Among them, 5, 4, and 10 microbe isolates showed promising antifungal activity against mycelium growth of R. solani AG-2-2 (IIIB), R. solani AG-2-2 (IV), and S. homoeocarpa, respectively. The bacterial isolates ICIIIB60, GWIV70, and ISSH20 effectively inhibited the mycelial growth of three soil-borne turfgrass pathogens. Selected bacterial isolates were identified as Alcaligenes sp., Bacillus licheniformis Ab2, and B. subtilis C7-3 through 16s rDNA gene sequence analysis. Among 5 fungicides, the most compatible fungicide with ICIIIB60, GWIV70, and ISSH20 was tebuconazol, toclofos-methyl and toclofos-methyl, respectively. These findings suggested that CLMs could be effectively used not only as organic liquid fertilizer sources but also as biological control agents for soil-borne turfgrass diseases such as brown patch, large patch, and dollar spot.

가축분뇨액비의 토양전염성 잔디병해들의 억제능력을 알아보고자 군위, 논산, 무안, 여주, 이천, 익산, 합천, 횡성 등 8개 지역의 가축분뇨액비생산시설에서 생산된 액비를 이용하여 기내에서 수행하였다. 가축분뇨액비와 병원균주들과의 대치배양을 통해 총 110종의 길항미생물을 선발하였으며, 각 병원균주별로 길항능력이 우수한 한 종씩을 선발하였다. 선발된 각각의 미생물은 16s rRNA 서열분석을 통해 brown patch에 길항력을 보인 ICIIIB60은 Alcaligenes sp., large patch에 길항력을 나타낸 GWIV70은 Bacillus licheniformis Ab2, dollar spot에 길항력을 보인 ISSH20은 B. subtilis C7-3으로 동정되었다. 이들의 최적배양조건은 NB 배지(ICIIIB60)와 TSB 배지(GWIV70, ISSH20)에서 온도는 $29.5^{\circ}C-31.4^{\circ}C$의 범위에서, pH는 6.5-7.3의 범위에서 잘 자라는 것으로 확인되었다. 또한 각 균주를 5종의 살균제와 혼용한 결과, ICIIIB60 균주는 테부코나졸 제제, GWIV70와 ISSH20 균주는 토클로포스메틸 제제에서 생존율이 높아 혼용처리가 가능할 것으로 판단되었다. 이러한 결과를 통해 가축분뇨액비는 비료로서의 역할뿐만이 아니라 잔디 병해를 줄일 수 있는 친환경적인 소재로 이용이 가능함을 확인하였다.

Keywords

References

  1. Boulter, J.I., G.J. Boland, and J.T. Trevors. 2002. Evaluation of composts for suppression of dollar spot (Sclerotinia homoeocarpa) of turfgrass. Plant Dis. 86:405-410. https://doi.org/10.1094/PDIS.2002.86.4.405
  2. Cheng, Z., P.S. Grewal, B.R. Stinner, K.A. Hurto, and H.B. Hamza. 2008 Effects of long-term turfgrass management practices on soil nematode community and nutrient pools. Appl. Soil Ecol. 38:174-184. https://doi.org/10.1016/j.apsoil.2007.10.007
  3. El-Masry, M., A. Khalil, M. Hassouna, and H. Ibrahim. 2002. In situ and in vitro suppressive effect of agricultural composts and their water extracts on some phytopathogenic fungi. World J. Microbiol. Biotechnol. 18:551-558. https://doi.org/10.1023/A:1016302729218
  4. Garling D.C. and M.J. Boehm. 2001. Temporal effects of compost and fertilizer applications on nitrogen fertility of golf course turfgrass. Agron. J. 93:548-555. https://doi.org/10.2134/agronj2001.933548x
  5. Ham, S.K., Y.S. Kim, and C.H. Park. 2010. The growth effects of creeping bentgrass by SCB (slurry composting and biofilteration) liquid fertilizer application. Kor. Turfgrass Sci. 24:56-61.
  6. Ham, S.K., Y.S. Kim, T.S. Kim, K.S. Kim, and C.H. Park. 2009. The effect of SCB (slurry composting and biofilteration) liquid fertilizer on growth of creeping bentgrass. Kor. Turfgrass Sci. 23:91-100.
  7. He, Y.C., J.H. Xu, J.H. Su, and L. Zhou. 2010. Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl. Biochem. Biotechnol. 160:1428-1440. https://doi.org/10.1007/s12010-009-8607-y
  8. Jeon, S.J., S.R. Kim, K.S. Rho, D.Y. Choi, D.K. Kim, and M.G. Lee. 2012. Physicochemical characteristics of liquid fertilizer made from pig manure in Korea. J. Livestock Housing Environ. 18:221-228.
  9. Jung, W.C., T.S. Shin, K.S. Do, W.K. Kim, J.H. Lee, and K.H. Choi. 2006. Development of antagonistic microorganism for biological control of blight of turfgrass. Res. Plant Dis. 12:260-266. https://doi.org/10.5423/RPD.2006.12.3.260
  10. Kang, B.K., H.H. Jung, and K.S. Kim. 2010. Effect of slurry composted and biofiltered solution and an organic fertilizer on the growth of zoysiagrass. Hort. Environ. Biotechnol. 51:507-512.
  11. Kim, H.Y., K.S. Gwak, H.Y. Kim, K.O. Ryu, P.G. Kim, D.H. Cho, J.Y. Choi, and I.G. Choi. 2011. Effect of treatment amounts of slurry composting and biofilteration liquid fertilizer on growth characteristics and bioethanol production of yellow poplar. Kor. Soc. Wood Sci. Tech. 39:459-468. https://doi.org/10.5658/WOOD.2011.39.6.459
  12. Kim, Y.S., S.K. Ham, and H.J. Lim. 2012. Monitoring of soil chemical properties and pond water quality in golf courses after application of SCB liquid fertilizer. Asian J. Turfgrass Sci. 26:44-53.
  13. Lee, S.J., K.K. Shim, Y.K. Kim, and K.Y. Hue. 1998. Suppression of Rhizoctonia spp. by antagonistic microorganisms and their compatibility with fungicides. Kor. Turfgrass Sci. 12:23-30.
  14. Lim, H.J., Y.S. Kim, and S.K. Ham. 2011. Screening of cellulose decomposing microorganisms for functional improvement for SCB (slurry composting and biofiltering) liquid fertilizer. Asian J. Turfgrass Sci. 25:48-51.
  15. Lim, T.J., S.D. Hong, S.H. Kim, and J.M. Park. 2008. Evaluation of yield and quality from red pepper for application rates of pig slurry composting biofilteration. Kor. J. Environ. Agr. 27:171-177. https://doi.org/10.5338/KJEA.2008.27.2.171
  16. Liu, S. and R. Baker. 1980. Mechanism of biological control in soils suppressive to Rhizoctonia solani. Phytopathology 70:404-412. https://doi.org/10.1094/Phyto-70-404
  17. Moody, A.R. and D. Gindrat. 1977. Biological control of cucumber black root rot by Gliocladium roseum. Phytopathology 67: 1159-1162.
  18. Naidu, Y., S. Meon, and Y. Siddiqui. 2012. In vitro and in vivo evaluation of microbial-enriched compost tea on the development of powdery mildew on melon. BioControl 57:827-836. https://doi.org/10.1007/s10526-012-9454-2
  19. Nakasaki, K., S. Hiraoka, and H. Nagata. 1998. A new operation for producing disease-suppressive compost from grass clippings. Appl. Environ. Microbiol. 64:4015-4020.
  20. Nelson, E.B. and C. Craft. 1991. Introduction and establishment of strains of Enterobacter cloacae in golf course turf for the biological control of dollar spot. Plant Dis. 75:510-514. https://doi.org/10.1094/PD-75-0510
  21. Nelson, E.B. and M.J. Boehm. 2002. Compost-induced suppression of turf grass diseases. BioCycle 43:51-51.
  22. Oh, H.M., J.H. Kang, C.H. Lee, C.S. Park, S.K. Ahn, B.D. Yoon, and Y.H. Kho. 1994. Isolation and characterization of a naphthalene-degrading strain, Alcaligenes sp. A111. Kor. J. Appl. Microbiol. Biotechnol. 22:423-429.
  23. Park, J.M., T.J. Lim, S.E. Lee, and I.B. Lee. 2011. Effect of pig slurry fertigation on soil chemical properties and growth and development of cucumber (Cucumis sativus L.). Kor. J. Soil Sci. Fert. 44:194-199. https://doi.org/10.7745/KJSSF.2011.44.2.194
  24. Park, S.J., S.Y. Lee, J.H. Ryu, H.H. Jung and K.S. Kim. 2012. Optimum application amount, timing, and frequency of slurry composted and biofiltered liquid fertilizer for Zoysia japonica 'Millock'. Kor. J. Hort. Sci. Technol. 30:635-641. https://doi.org/10.7235/hort.2012.12099
  25. Ruppel, E.G., R. Baker, G.E. Harman, J.P. Hubbard, R.J. Hecker, and I. Chet. 1983. Field tests of Trichoderma harzianum Rifai aggr. as a biocontrol agent of seedling disease in several crops and Rhizoctonia root rot of sugar beet. Crop Prot. 2:399-408. https://doi.org/10.1016/0261-2194(83)90060-1
  26. Seo, Y.H., B.O. Cho, H.K. Choi, A.S. Kang, B.C. Jeong, and Y.S. Jung. 2010. Impact of continuous application of swine slurry on changes in soil properties and yields of tomatoes and cucumbers in a greenhouse. Kor. J. Soil Sci. Fert. 43: 446-452.
  27. Shim, G.Y. and H.K. Kim. 2000. Control of large patch caused by Rhizoctonia solani AG2-2 by combined application of antagonists and chemicals in golf courses. Kor. Turfgrass Sci. 13:131-138.
  28. Tu, C.M. 1980. Influence of five pyrethroid insecticides on microbial populations and activities in soil. Microb. Ecol. 5:321-327. https://doi.org/10.1007/BF02020339

Cited by

  1. 한국의 잔디병해 연구사 vol.7, pp.2, 2014, https://doi.org/10.5660/wts.2018.7.2.87
  2. Biocontrol of Large Patch Disease in Zoysiagrass (Zoysia japonica) by Bacillus subtilis SA-15: Identification of Active Compounds and Synergism with a Fungicide vol.8, pp.1, 2014, https://doi.org/10.3390/horticulturae8010034