References
- Acock, A.C., "Working with missing values", Journal of Marriage and Family, Vol.67, No.4, 2005, 1012-1028. https://doi.org/10.1111/j.1741-3737.2005.00191.x
- Allison, P.D., "Missing data : Quantitative applications in the social sciences", British Journal of Mathematical and Statistical Psychology, Vol.55, No.1, 2002, 193-196. https://doi.org/10.1348/000711002159653
- Anderson, A.B., R. Basilevsky, and D.P.J. Hum, "Missing data : a review of the literature", Handbook of survey research, Vol.4, 1983, 415-494.
- Andridge, R.R. and R.J.A. Little, "A Review of Hot Deck Imputation for Survey Non-response", International Statistical Review, Vol.78, No.1, 2010, 40-64. https://doi.org/10.1111/j.1751-5823.2010.00103.x
- Baraldi, A.N. and C.K. Enders, "An introduction to modern missing data analyses", Journal of School Psychology, Vol.48, No.1, 2010, 5-37. https://doi.org/10.1016/j.jsp.2009.10.001
- Batista, G.E. and M.C. Monard, "A Study of K-Nearest Neighbour as an Imputation Method", HIS, Vol.87, 2002, 251-260.
- Bennett, D.A., "How can I deal with missing data in my study?", Australian and New Zealand Journal of Public Health, Vol.25, No.5, 2001, 464-469. https://doi.org/10.1111/j.1467-842X.2001.tb00294.x
- Carpenter, J., "Statistical modelling with missing data using multiple imputation Session 2 : Multiple Imputation", 2010.
- Cheng, X. and D. Cook, and H. Hofmann, "MissingDataGUI : A Graphical User Interface for Exploring Missing Values in Data", 2013.
- Christobel, Y.A. and P. Sivaprakasam, "Improving the performance of K-nearest neighbor algorithm for the classification of diabetes dataset with missing values", International Journal of Computer Engineering and Technology, Vol.3, No.3, 2012, 16-23.
- Devane, D.C., M. Begley, and M. Clarke, "How many do I need? Basic principles of sample size estimation", Journal of Advanced Nursing, Vol.47, No.3, 2004, 297-302. https://doi.org/10.1111/j.1365-2648.2004.03093.x
- Finch, W.H., "Imputation Methods for Missing Categorical Questionnaire Data : A Comparison of Approaches", Journal of Data Science, Vol.8, 2010, 361-378.
- Graham, J.W., P.E. Cumsille, and E. Elek, Fisk Methods for handling missing data, Handbook of psychology, 2003.
- Gunn, S.R., "Support vector machines for classification and regression", ISIS technical report, Vol.14, 1998.
- He, H., W. Graco, and X. Yao, "Application of genetic algorithm and k-nearest neighbour method in medical fraud detection", Simulated Evolution and Learning, Springer Berlin Heidelberg, 1999, 74-81.
- Jonsson, P. and C. Wohlin, "An evaluation of k-nearest neighbour imputation using likert data", Software Metrics, 2004. Proceedings 10th International Symposium on IEEE, 2004.
- Kim, K. and H. Ahn, "Optimization of Support Vector Machines for Financial Forecasting", Journal of Intelligence and Information System, Vol.17, No.4, 2011, 241-254.
- King, G. et al., "Analyzing incomplete political science data : An alternative algorithm for multiple imputation", American Political Science Association, Vol.95. No.1, 2001.
- Little, R.J.A., "A test of missing completely at random for multivariate data with missing values", Journal of the American Statistical Association, Vol.83, No.404, 1988, 1198-1202. https://doi.org/10.1080/01621459.1988.10478722
- Little, R.J.A. and D.B. Rubin, "Statistical Analysis with", 2002.
- MacCallum, R.C. et al., "On the practice of dichotomization of quantitative variables", Psychological methods, Vol.7, No.1, 2002, 19. https://doi.org/10.1037/1082-989X.7.1.19
- Martin, A.T., M. Akshmi, and V.P. Venkatesan, "An Analysis on Qualitative Bankruptcy Prediction Rules using Ant-Miner", International Journal of Intelligent Systems and Applications, Vol.6, No.1, 2013.
- Peng, C.J. et al., "Advances in missing data methods and implications for educational research", Real data analysis, 2006, 31-78.
- Pettersson, N., "Real donor imputation pools", Proceedings of the Workshop of the Baltic-Nordic-Ukrainian network on survey statistics, 2012.
- Roth, P.L., "Missing data : A conceptual review for applied psychologists", Personnel Psychology, Vol.47, No.3, 1994, 537-560. https://doi.org/10.1111/j.1744-6570.1994.tb01736.x
- Rubin, D.B., "Inference and missing data", Biometrika, Vol.63, No.3, 1976, 581-592. https://doi.org/10.1093/biomet/63.3.581
- Sarma, H.T. et al., "An improvement to k-nearest neighbor classifier", arXiv preprint arXiv : 1301.6324, 2013.
- Saunders, J.A. et al., "Imputing missing data : A comparison of methods for social work researchers", Social work research, Vol.30, No.1, 2006, 19-31. https://doi.org/10.1093/swr/30.1.19
- Somasundaram, R.S. and R. Nedunchezhian, "Evaluation of Three Simple Imputation Methods for Enhancing Preprocessing of Data with Missing Values", International Journal of Computer Applications (0975-8887), Vol.21, No.10, 2011, 14-19.
- Schafer, J.L., Analysis of incomplete multivariate data, CRC press, 1997.
- Schafer, J.L. and J.W. Graham, "Missing data : our view of the state of the art", Psychological methods, Vol.7, No.2, 2002, 147. https://doi.org/10.1037/1082-989X.7.2.147
- Schlomer, G.L., S. Bauman, and N.A. Card. "Best practices for missing data management in counseling psychology", Journal of Counseling Psychology, Vol.57, No.1, 2010.
- Suykens, J.A., "Advances in learning theory : methods, models, and applications," Vol.190, IOS Press, 2003.
- Van Buuren, Stef, Flexible imputation of missing data, CRC press, 2012.
- Vapnik, V.N., Statistical Learning Theory, Wiley, New York, 1998.
- Viswanath, P. and T.H. Sarma, "An improvement to k-nearest neighbor classifier", Recent Advances in Intelligent Computational Systems (RAICS), IEEE, 2011.
- Yan, X., "Weighted K-Nearest Neighbor Classification Algorithm Based on Genetic Algorithm", TELKOMNIKA Indonesian Journal of Electrical Engineering, Vol.11, No.10, 2013.
- Zhang, C., Q.Y. Zhu, X.J. Zhang, and S. Zhang, "Clustering-based missing value imputation for data preprocessing", In Industrial Informatics, IEEE International Conference on, IEEE, 2006, 1081-1086.