DOI QR코드

DOI QR Code

A Study on Utility for Fine Aggregates and Engineering Characteristics by Mineralogical Composition of Sands on the Coast of Jeju Island

제주 해안지역 모래의 광물성분에 기인한 공학적 특성 및 잔골재 활용방안 연구

  • Kim, Seung Hyun (Department of Civil and Ocean Engineering, Jeju National Univ.) ;
  • Lee, Dong Wook (Department of Civil Engineering, Jeju National Univ.)
  • Received : 2014.09.23
  • Accepted : 2014.11.10
  • Published : 2014.12.30

Abstract

This study categorizes the distributed sand around coastal area of Jeju volcanic Island into three groups according to their components, and arranges their characteristics. In the case of basic physical properties, the silicate sand has slightly greater specific gravity than general sand, and the carbonate sand with widespread distribution has a lower specific gravity. In the gross, the carbonate sand has poor particle classifying and low uniformity coefficient because carbonate minerals of relatively large grain size are mixed. The relation between compressive strength and components shows conflicting tendency that silicate and carbonate components have positive correlation and negative correlation with compressive strength, respectively. Based on the components ratio of one to one, the sand having low carbonate component ratio is expected to be able to utilize in construction fine aggregate. To compare between square root (ACI 308) and cube root (KCI 2012) of compressive strength at computation of elastic modulus, it is considered to non-dimensional elastic modulus.

본 연구에서는 화산섬 제주의 해안지역에 산발적으로 분포하고 있는 모래들을 성인에 따라 세 개의 그룹으로 분류(규산염모래, 탄산염모래, 혼재된 모래)하여 그 특성을 정리하였다. 기본물성은 일반적인 모래의 비중에 비해 규산염모래는 다소 높고 탄산염모래는 낮은 값들을 포함하여 넓게 분포하며 전체적으로 비교적 입경이 큰 탄산염광물이 혼재되어 있어 분급이 불량하고 균등계수가 낮다. 구성성분에 따른 압축강도와의 관계는 규산염성분은 압축강도와 양의 상관을 보이고 탄산염성분은 음의 상관을 보여 서로 상반되는 경향을 보인다. 두성분의 비가 1:1을 기준으로 탄산염성분비가 작아지는 지역의 모래는 건설용 잔골재로 활용이 가능할 것으로 추정된다. 탄성계수 산정 시 압축강도의 2제곱근(ACI 308)과 3제곱근(KCI 2012)을 비교하기 위해 탄성계수를 무차원하여 검토하였다.

Keywords

References

  1. ACI 318 (2008), Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08), American Concrete Institute.
  2. Cho, S. H. (2007), "A study on the Characteristics of Cheju Island's Beach Sands", Master's Thesis, Cheju National Univ. (in Korea).
  3. Eurocode 2 (2002), Design of Concrete Structures-Part 1 : General rules and rules for buildings, Commission for the European Community.
  4. Go, G. W., Youn, J. S. and Kim, S. B. (1988), "Study on the Beaches Sediment in U-Island, Eastern Part of Cheju Island", Bulletin of Marine Science Institute, Cheju National Univ. (in Korea), Vol.12, pp.43-53.
  5. Goo, M. S., Bae, S. H., Kwon, S. O., Lee, H. J. and Lee, S. H. (2013), "Influence of Fineness Modulus of Fine Aggregate on the Mix Characteristics of Concrete", Proceedings of Korea Concrete Institute, Vol.2013, No.5, pp.57-58.
  6. Jung, Y. W., Lee, S. H. and Yun, Y. H. (2005), "The Influence of Fineness Modulus of Fine Aggregate and Grain Shape of Coarse Aggregate on the Properties of High Flowing Concrete", Journal of Korea Concrete Institute, Vol.17, No.5, pp.785-792. https://doi.org/10.4334/JKCI.2005.17.5.785
  7. Kang, S. K. and Roh, Y. (2013), "Mineralogical and Biogeochemical Characteristics of Rhodoliths from Wu do, Jeju Island, Korea", Proceedings of the Geological Society of Korea, Vol.2013, No.10, pp.221-221.
  8. KCI 2012, Concrete design code and commentary, Kimoondang publish company(in Korea), Korea Concrete Institute, pp. 75-76.
  9. Korea Construction Newspapers (2009.03), Aggregate price crash and downtime supplier concerns, (http://www.conslove.co.kr/news/articleView.html?idxno=19461).
  10. Korea Institue of Geology Mining & Materials (2000), Explanatory note of the Jeju(Baekado, Jinnampo) sheet. pp.11-18.
  11. Kraus, E. H. (1959), Mineralogy; an introduction to the study of minerals and crystals, McGraw-Hill, New York.
  12. KS F 2405 (2010), Standard Test Method for Compressive Strength of Concrete, Korea Standards Association.
  13. Le Maitre, R. W., 1984, A proposal by the IUGS subcommission on the systematics of igneous rocks for a chemical classification of volcanic rocks based on the total alkali silica (TAS) diagram. Australian Journal of Earth Sciences, 31, pp.243-255. https://doi.org/10.1080/08120098408729295
  14. Lee, D. W. and Kim, S. H. (2014), "Aggregate Utilization of Sands Containing Carbonates in Jeju coast", Proceedings of the Korea Society for Geo-Spatial Information System, Vol.2014, No.5, pp.143-144.
  15. Ministry of Land, Transport and Maritime Affairs (2008), Handbook for Construction and Management of Cement Concrete Pavement, pp.12-15.
  16. Nam, J. S., Cho, S. H. and Kim, T. H. (2007a), "Compression Characteristics of Jeju Island Beach Sands", Journal of the Korean geotechnical society, Vol.23, No.6, pp.103-114.
  17. Nam, J. S., Park, J. Y. and Hong, J. W. (2007b), "A study on the Characteristics and Application characteristics of Cheju Island's Beach Sands", Bulletin of Marine Science Institute, Cheju National Univ. (in Korea), Vol.31, No.1, pp. 45-57.
  18. Sinkankas, J. (1966), Mineralogy, Princeton, NJ.
  19. Yang, K. H. and Hwang, H. Z. (2010), "Compressive Strength and Elastic Modulus Properties of High-Performance Rammed Earth Concrete", Journal of the Architectural Institute of Korea Structure & Construction, Vol.26, No.3, pp.69-76.
  20. Youn, J. S. (1985), "Beach Sediments of the Jeju Island, Korea", Journal of Korean Inst. Mining Geol., Vol.18, No.1, pp.55-63.