DOI QR코드

DOI QR Code

IEEE 802.11n 무선 랜에서 재전송 프레임 수를 줄이기 위한 향상된 Block ACK 방법

Efficient Block ACK Scheme for Reducing the Number of Retransmitted Frames in IEEE 802.11n Wireless LANs

  • 투고 : 2014.11.22
  • 심사 : 2014.12.17
  • 발행 : 2014.12.31

초록

IEEE 802.11n 표준은 네트워크 성능을 향상시키기 위해 MAC과 물리 계층에서 새로운 방법들을 제안하였다. MAC 계층에서 성능 향상을 위해 제안된 주요 방법은 프레임 집적(Frame Aggregation)과 Block ACK이다. IEEE 802.11n 표준에도 여전히 문제점은 존재한다. Block ACK 요청 프레임이나 Block ACK 응답 프레임이 손실되거나 에러가 포함되어 수신되면, 전송 단말은 집적된 큰 프레임에 포함된 작은 프레임들의 성공적인 전송 여부를 알지 못하기 때문에 모든 작은 프레임을 재전송한다. 이는 성공적으로 전송된 프레임도 재전송될 수 있기 때문에 네트워크의 성능 저하를 초래할 수 있다. 이 문제를 해결하기 위해 본 논문에서는 RRM(Reduced Retransmissions of MPDUs) 방법을 제안한다. 제안된 방법에서 송신 단말이 Block ACK 응답을 못 받으면 모든 프레임을 재전송하는 대신에 다음 데이터 프레임 하나를 전송하고 다시 Block ACK를 요청한다. 응답을 받은 후에 에러가 발생한 프레임에 대해서만 재전송을 수행한다. 제안된 방법의 성능을 시뮬레이션을 통해 분석한다. 시뮬레이션 결과, 제안된 방법이 다양한 패킷 에러 환경에서 효과적이고 네트워크 성능을 향상 시키는 것을 보여주었다.

IEEE 802.11n standard has introduced the new schemes in MAC and PHY layers to improve network throughput. Frame aggregation and Block ACK are mainly defined to increase the efficiency of the MAC layer. There exists still problem in IEEE 802.11n. When block ACK request and/or response frames are missing or received in error, the sender does not know the status (success/failure) of each frame in the aggregated large frame and retransmits all the frames. This can cause a lower network performance. To solve this problem, we propose a new effective scheme, called reduced retransmission of MPDUs (RRM) scheme. In the proposed scheme, when a sender does not receive a block ACK response frame, it just transmits a next data frame and requests a block ACK. Therefore, it can retransmits the erroneous frames. Performance of the proposed scheme is investigated by simulation. Our results show that the proposed scheme is very effective and improves the performance under a wide range of channel error conditions.

키워드

참고문헌

  1. IEEE Std 802.11n, "IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Higher Throughput," Oct. 2009.
  2. IEEE Std 802.11e, "IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Quality of Service Enhancements," 2005.
  3. A. Saif, M. Othman, S. Subramaniam, and N. AbdulHamid, "Impact of Aggregation Headers on Aggregating Small MSDUs in 802.11n WLANs," 2010 International Conference on Computer Applications and Industrial Electronics (ICCAIE), pp. 630-635, Dec. 2010.
  4. B. Ginzburg and A. Kesselman, "Performance Analysis of A-MPDU and A-MSDU Aggregation in IEEE 802.11n," IEEE Sarnoff Symposium, pp.1-5, 2007.
  5. Y. Daldoul1, T. Ahmed, and D. Meddour, "IEEE 802.11n Aggregation Performance Study for the Multicast," IFIP Wireless Days(WD), pp. 1-6, Oct. 2011.
  6. E. Charfi, L. Chaari, and L. Kamoun, "Fairness of the IEEE 802.11n Aggregation Scheme for Real Time Application in Unsaturated Condition,"IFIP Wireless and Mobile Networking Conference (WMNC), pp.1-8, Oct. 2011.
  7. T.Y. Arif and R.F. Sari, "Throughput Estimates for A-MPDU and Block ACK Schemes Using HT-PHY Layer," Journal of Computing, Vol. 9, No. 3, pp. 678-687, March 2014.
  8. Y. Lin and V.W.S. Wong, "Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11n WLANs," IEEE GLOBECOM'06, pp. 1-6, Dec. 2006.
  9. D. Skordoulis, Q. Ni, H. Chen, A.P. Stephens, C. Liu, and A. Jamalipour, "IEEE 802.11n MAC Frame Aggregation Mechanisms for Next-Generation High-Throughput WLANs," IEEE Wireless Communications, Vol. 15, No. 1, pp. 40-47, Feb. 2008.
  10. Y. Xiao, "IEEE 802.11n: Enhancements for Higher Throughput in Wireless LANs," IEEE Wireless Communications, Vol. 12, No. 6, pp. 82-91, Dec. 2005.
  11. C.-Y.Wang and H.-Y. Wei, "IEEE 802.11n MAC Enhancement and Performance Evaluation," Mobile Networks and Applications, Vol. 14, No. 6, pp. 760-771, Dec. 2009. https://doi.org/10.1007/s11036-008-0129-2
  12. T.Y. Arif and R.F. Sari, "An Analytical Model of A-MSDU Scheme with Enhanced Block ACK for IEEE 802.11n Networks," IEEE International Conference on Networks (ICON), pp. 291-298, Dec. 2012.
  13. C. Shin, H. Park, and H.M. Kwon, "PHY-Supported Frame Aggregation for Wireless Local Area Networks," IEEE Transactions on Mobile Computing, Vol. 13, No. 10, pp. 2369-2381, October 2014. https://doi.org/10.1109/TMC.2014.2304393
  14. W.-J. Liu, C.-H. Huang, and K.-T. Feng, "Performance Analysis of Block Acknowledgement Mechanisms for Next Generation Wireless Networks," IEEE WCNC'2010 pp. 1-6, April 2010.