DOI QR코드

DOI QR Code

Effect of Daphnia magna on Nanoparticle(ZnO, TiO2) Aggregates in Aqueous System

수생태계에서 ZnO, TiO2나노입자 응집체가 물벼룩(Daphnia magna)에 미치는 영향

  • Lee, Ha-Neul (Marine Environmental Engineering, Gyeongsang National University) ;
  • Lee, Byeong-Woo (Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health) ;
  • Park, Chan-Il (Institute of Marine Industry, College of Marine Science, Gyeongsang National University) ;
  • Kim, Mu-Chan (Institute of Marine Industry, College of Marine Science, Gyeongsang National University)
  • 이하늘 (경상대학교 해양환경공학과) ;
  • 이병우 (산업의과대학 산업생태과학 연구소) ;
  • 박찬일 (경상대학교 해양산업연구소) ;
  • 김무찬 (경상대학교 해양산업연구소)
  • Received : 2014.08.20
  • Accepted : 2014.10.28
  • Published : 2014.10.31

Abstract

This study is unrefined ZnO, $TiO_2$ nanoparticles is expose M4 medium to search nanoparticle aggregation and Daphnia magna was any effect by immobilization and mortality. ZnO and $TiO_2$ nanoparticle powder-size is respectively 20 nm and 40 nm. but, M4 medium has about respectively as 1333 nm and 1628 nm, 40 to 70 times were agglomerated. Immobilization of ZnO and $TiO_2$ nanoparticles was influenced both time and concentration the higher to swimming of D.magna. Especially, The immobilization of D.magna in nano-ZnO is greater than that influence in nano-$TiO_2$. Mortality of ZnO nanoparticle is higher rate at long time and high concentration. $TiO_2$ nanoparticle observed mortality at 10ppm concentration after 72h. Consequently, when Nanoparticles is introduced into ocean. Particle size become grow. Additionally, aggregation be caused affect aquatic ecosystems.

본 연구에서는 정제되지 않은 ZnO 및 $TiO_2$나노입자를 M4배지에 노출시켜 두 나노입자가 어느 정도 크기의 응집체로 변화되는지를 살펴보고 또한 두 나노입자가 수생태계 생물종인 Daphnia magna에 어떠한 영향을 초래하는지 유영저해 및 폐사율을 통해 살펴보았다. ZnO 및 $TiO_2$나노입자의 분말상태 크기는 각각 20 nm와 40 nm였지만, M4배지에서는 1333 nm와 1628 nm로 약 40~70배의 크기로 응집되었다. 유영저해의 경우 ZnO와 $TiO_2$나노입자 모두 시간 및 농도가 높아질수록 D.magna가 유영하는데 영향을 미친 것으로 나타났으며, 특히 ZnO나노입자가 $TiO_2$나노입자에 비해 더 큰 영향을 미치는 것으로 나타났다. 폐사율의 경우 ZnO나노입자에서는 시간 및 농도가 높아질수록 폐사되는 비율이 높았으며, $TiO_2$나노입자에서는 72시간이 경과된 시점의 10 ppm 이상의 농도에서 폐사하는 것으로 관찰되었다. 이는 나노입자가 해양에 유입됨으로 인해 원래의 크기에 비해 응집되어 증가되어진다는 것을 알 수 있으며, 또한 그 응집체로 인해 수생태계 생물에 영향을 주는 것으로 나타났다.

Keywords

References

  1. Kim, S. G.(2006), Bioassay of Industiral Effluent using the Water Flea(Daphnia magna) and Bioluminescent Bacteria (Vibrio fischeri), Hanyang university.
  2. Kim, S. Y.(2014), Time-depentent toxicity response of Daphnia magna exposed to CuO and ZnO nanoparticles, Korea university.
  3. Kennedy, A. J., M. A. Chappell, A. J. Bednar, A. C. Rhan, J. G. Laird, J. K. Stanley and J. A. Steevens(2012), Impact of organic carbon on the stability and toxicity of fresh and stored silver nanoparticles. Environ. Sci. Technol. 46:10772-10780 https://doi.org/10.1021/es302322y
  4. Franklin, N. M., N. J. Rogers, S. C. Apte, G. E. Batley, G. E. Gadd and P. S. Casey(2007), Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and $ZnCl_{2}$ to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility, Environ. Sci. Technol., Vol. 41, pp. 8484-8490. https://doi.org/10.1021/es071445r
  5. Hund-Rinke, k. and M. Simon(2006), Ecotoxic effect of photocatalytic active nanoparticles(TiO2) on algae and daphnids, Environ. Sci. Pollut. Res., Vol. 13, pp. 225-232. https://doi.org/10.1065/espr2006.06.311
  6. Hwang, E. T., J. I. Lee, B. I. Sang and M. B. Gu(2007), Toxicity Monitoring and Assessment of Nanoparticles Using Bacteria, Korean J. Biotechnol. Bioeng, Vol. 22, No. 6, pp. 414-420.
  7. Iijima, M., M. Tsukada and H. Kamiya(2007), Effect of particle size on surface modification of silica nanoparticles by using silane coupling agents and their dispersion stability in methylethylketone, J. Colloid Interf. Sci., Vol. 307, No. 2, pp. 418-424. https://doi.org/10.1016/j.jcis.2006.11.044
  8. Lee, H. S. and Y. J. Suh(2008), Dispersion Stability of Nanofluids and Its Application, KSFC, Vol. 5, No. 3, pp. 30-37.
  9. Nasu, A. and Y. Otsubo(2008), Effects of polymeric dispersants on the rheology and UV-protecting properties of complex suspensions of titanium dioxides and zinc oxides, Vol. 326, No. 2, pp. 92-97. https://doi.org/10.1016/j.colsurfa.2008.05.019
  10. OECD(2010), Series on the safety of Manufactured Nanomaterials, ENV/JM/MONO, 46.
  11. OECD(2004), OECD Guideline for Testing of Chemicals. 'Daphnia sp., Acute Immobilisation Test.'
  12. Sillanpaa, M., T. M. Paunu and P. Sainio(2011), Aggregation and deposition of engineered $TiO_{2}$ nanoparticles in natural fresh and brackish waters., IOP Publishing, Vol. 304. 012018.
  13. Jeong, Y. G.(2009), Effect of Nano Particle on the Hachting rate of Artemia sp. Cyst Zooplankton, Journal of the Korean Society, Vol. 12, No. 4, pp. 302-306.
  14. Warheit, D. B., W. J. Brock, W. J. Lee, K. P. Webb and K. L. Reed(2005), Comparative pulmonary toxicity inhalation and instillation studies with different $TiO_{2}$ particle formulations: impact of surface treatments on particle toxicity, Toxicol. Sci., 88, pp. 514-524. https://doi.org/10.1093/toxsci/kfi331
  15. Wie, M. A., S. J. Oh, S. C. Kim, R. Y. Kim, S. P. Lee, W. I. Kim and J. E. Yang(2012), Toxicity assessment of silver ions compared to silver nanoparticles in aqueous solutions and soils using microtox bioassay, Korean J. Soil Sci. Fert., Vol. 45, No. 6, pp. 1114-1119. https://doi.org/10.7745/KJSSF.2012.45.6.1114
  16. Yang, R., Y. Liu, K. Wang and J. Yu(2003), Characterization of surface interaction of inorganic filters with silane coupling agents, Anal.Appl.Pyrol., Vol. 70, Issue 2, pp. 413-425. https://doi.org/10.1016/S0165-2370(02)00200-0