DOI QR코드

DOI QR Code

Effect of Kelpak® on the promotion of in vitro rooting in transgenic rose plantlets

Kelpak® 침지 처리에 의한 형질전환 장미 기내 식물체 발근 촉진

  • Lee, Su Young (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kwon, O Hyeon (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Lee, Hye Jin (National Institute of Horticultural & Herbal Science, Rural Development Administration) ;
  • Kim, Won Hee (National Institute of Horticultural & Herbal Science, Rural Development Administration)
  • 이수영 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 권오현 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 이혜진 (농촌진흥청 국립원예특작과학원 화훼과) ;
  • 김원희 (농촌진흥청 국립원예특작과학원 화훼과)
  • Received : 2014.10.21
  • Accepted : 2014.11.01
  • Published : 2014.12.31

Abstract

In order to promote in vitro rooting in SOD2-transgenic rose plantlets, which were not well rooted in a rooting medium (MS medium with NAA $0.03mg{\cdot}L^{-1}$), we dipped the plantlets into liquid $Kelpak^{(R)}$ before placing them in the rooting medium. After 4 weeks, $Kelpak^{(R)}$ significantly promoted in vitro rooting in the plantlets. Therefore, $Kelpak^{(R)}$ can be used successfully to aid in the in vitro rooting of rose plantlets with roots that are not well-generated.

도입 유전자의 영향으로 발근유도배지(NAA $0.03mg{\cdot}L^{-1}$ 첨가 MS배지)에서도 발근이 잘 되지 않는 SOD2유전자 도입 장미 형질전환체의 $Kelpak^{(R)}$ 침지에 의한 발근 촉진가능성을 조사하였다. $Kelpak^{(R)}$ 액에 침지 후 발근유도배지에 배양 4주 후 장미 SOD2형질전환체의 기내뿌리 유도 및 뿌리생장이 촉진되었다. 또한 대조식물체인 비형질전환식물체도 $Kelpak^{(R)}$ 침지 처리후 발근유도배지에 배양하는 것이 $Kelpak^{(R)}$ 처리 없이 발근유도배지에 배양하는 것보다 뿌리수도 증가했을 뿐 아니라 뿌리길이 생장도 증진된 것으로 볼 때 $Kelpak^{(R)}$이 장미 기내식물체의 발근 촉진에 효과적인 것은 분명하다.

Keywords

References

  1. Arthur GD, Aremu AO, Moyo M, Stirk WA, van Staden J (2013) Growth-promoting effects of a seaweed concentrate at various pH and water hardness. South African J Sci 109:11-12
  2. Atta-Alla H, McAlister BG, van Staden J (1998) In vitro culture and establishment of Anthurium parvispathum. South African J Bot 64:296-298 https://doi.org/10.1016/S0254-6299(15)30904-2
  3. Brunner S, Stirnweis D, Quijano CD, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C, Winzeler M, Keller B (2011) Transgenic Pm3b wheat lines show resistance to powdery mildew in the field. Plant Biotech J 9:897-910 https://doi.org/10.1111/j.1467-7652.2011.00603.x
  4. Butaye KMJ, Cammue BPA, Delaure SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79-91 https://doi.org/10.1007/s11032-005-4929-9
  5. Jones NB, van Staden J (1997) The effects of a seaweed application on the rooting of pine cuttings. South African J Bot 63:141-145 https://doi.org/10.1016/S0254-6299(15)30726-2
  6. Kadner R, Eckardt S, Junghanns W (2010) The influence of rooting stimulating substances, propagation time, propagation system and source of cutting on rooting of a carnosolic acid rich rosemary genotype (Rosmarinus officinalis L.). Zeitschrifr fur Arznei-& Gewurzpflanzen 15:23-30
  7. Kowalski B, Jager AK, van Staden J (1999) The effect of a seaweed concentrate on the in vitro growth and acclimatization of potato plantlets. Potato Res 42:131-139 https://doi.org/10.1007/BF02358403
  8. Krajnc AU, Ivanus A, Kristl J, Susek A (2012) Seaweed extract elicits the metabolic responses in leaves and enhances growth of Pelagornium cuttings. Eur J Hort Sci 77:170-181
  9. Lindsey KL, Jager AK, van Staden J (1998) Effect of a seaweed concentrate on acclimatization of in vitro grown plantlets of Kniphofia pauciflora and Scilla krausii. South African J Bot 64:262-264 https://doi.org/10.1016/S0254-6299(15)30892-9
  10. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  11. Nakamura N, Fukuchi-Mizutani M, Katsumoto Y, Togami J, Senior M, Matsuda Y, Furuichi K, Yoshimoto M, Matsunaga A, Ishiguro K, Aida M, Tasaka M, Fukui H, Tsuda S, Chandler S, Tanaka Y (2011) Environmental risk assessment and field performance of rose (Rosa$\times$hybrida) genetically modified for delphinidin production. Plant Biotech 28: 251-261 https://doi.org/10.5511/plantbiotechnology.11.0113a
  12. Robertson-Andersson DV, Leitao D, Bolton JJ, Anderson RJ, Njobeni A, Ruck K (2006) Can kelp extract ($Kelpak^{(R)}$) be useful in seaweed mariculture? J Appl Phycol 18:315-321 https://doi.org/10.1007/s10811-006-9030-1
  13. Singer SD, Liu Z, Cox KD (2012) Minimizing the unpredictability of transgene expression in plants: the role of genetic insulators. Plant Cell Rep 31:13-25 https://doi.org/10.1007/s00299-011-1167-y
  14. Stirk WA, Tarkowska D, Turecova V, Strnad M, van Staden J (2014) Abscisic acid, gibberellins and brassinosteroids in $Kelpak^{(R)}$, a commercial seaweed extract made from Ecklonia maxima. J Appl Phycol 26561-567 https://doi.org/10.1007/s10811-013-0062-z
  15. Vanstaden J, Beckett RP, Rijkenberg MJ (1995) Effect of seaweed concentrate on the growth of the seedlings of 3 species of Eucalyptus. South African J Bot 61:169-172 https://doi.org/10.1016/S0254-6299(15)30513-5
  16. Vanstaden J, Upfold SJ, Drewes FE (1994) Effect of seaweed concentrate on the growth and development of the marigold tagetes-patula. J Appl Phycol 6:427-428 https://doi.org/10.1007/BF02182160
  17. Venturieri GA, Pickscius FJ (2013) Propagation of Noble Dendrobium (Dendrobium nobile Lindl.) by cutting. Acta Scientirum-Agronomy 35:501-504
  18. Yabor L, Arzola M, Aragon C, Hernandez M, Arencibia A, Lorenzo JC (2006) Biochemical side effects of genetic transformation of pineapple. Plant Cell Tiss Org Cult 86:63-67 https://doi.org/10.1007/s11240-006-9097-z