DOI QR코드

DOI QR Code

Re-evaluation of green tide-forming species in the Yellow Sea

  • Kang, Eun Ju (Department of Oceanography, Chonnam National University) ;
  • Kim, Ju-Hyoung (Department of Oceanography, Chonnam National University) ;
  • Kim, Keunyong (Department of Oceanography, Chonnam National University) ;
  • Choi, Han-Gu (Division of Life Sciences, Korea Polar Research Institute, KIOST) ;
  • Kim, Kwang Young (Department of Oceanography, Chonnam National University)
  • Received : 2014.08.09
  • Accepted : 2014.11.14
  • Published : 2014.12.15

Abstract

Green tides occur every year in the Yellow Sea (YS), and numerous investigations are proceeding on various aspects of the phenomenon. We have identified bloom-forming species collected from diverse locations in the YS using morphological traits and the chloroplast gene for the large subunit of ribulose-1,5-bisphosphate carboxylase (rbcL). Morphological and rbcL sequence data analyses characterized the blooming species on both sides of the YS as belonging to the Ulva linza-procera-prolifera (LPP) complex clade or U. prolifera of earlier reports. However, U. procera within the LPP complex must be regarded as synonym of U. linza. Moreover, U. prolifera in free-floating samples collected from the Qingdao coast in 2009 was clearly in a distinct clade from that of the blooming species. Therefore, U. linza is the main green tide alga in the YS and has the procera-morphology. The green drift mats in the southeastern part of the YS (southwest sea of Korea) consisted predominantly of U. linza and rarely of U. compressa or U. prolifera.

Keywords

References

  1. Bliding, C. 1963. A critical survey of European taxa in Ulvales. Part I. Capsosiphon, Percursaria, Blidingia, Enteromorpha. Opera Bot. 8:1-160.
  2. Blomster, J., Maggs, C. A. & Stanhope, M. J. 1998. Molecular and morphological analysis of Enteromorpha intestinalis and E. compressa (Chlorophyta) in the British Isles. J. Phycol. 34:319-340. https://doi.org/10.1046/j.1529-8817.1998.340319.x
  3. Blomster, J., Maggs, C. A. & Stanhope, M. J. 1999. Extensive intraspecific morphological variation in Enteromorpha muscoides (Chlorophyta) revealed by molecular analysis. J. Phycol. 35:575-586. https://doi.org/10.1046/j.1529-8817.1999.3530575.x
  4. Brodie, J., Maggs, C. A. & John, D. M. 2007. Green seaweeds of Britain and Ireland. British Phycological Society, London, pp. 94-97.
  5. Choi, D.-L., Noh, J.-H., Ryu, J.-H., Lee, J.-H., Jang, P.-K., Lee, T. & Choi, D.-H. 2010. Occurrence of green macroalgae (Ulva prolifera) blooms in the northern east China Sea in summer 2008. Ocean Polar Res. 32:351-359 (in Korean with English abstract). https://doi.org/10.4217/OPR.2010.32.4.351
  6. Duan, W., Guo, L., Sun, D., Zhu, S., Chen, X., Zhu, W., Xu, T. & Chen, C. 2012. Morphological and molecular characterization of free-floating and attached green macroalgae Ulva spp. in the Yellow Sea of China. J. Appl. Phycol. 24:97-108. https://doi.org/10.1007/s10811-011-9654-7
  7. Gilbert, D. G. 1995. SeqPub, a biosequence editor and analysis application. Biological Department, Indiana University, Bloomington, IN.
  8. Guidone, M., Thornber, C., Wysor, B. & O'Kelly, C. J. 2013. Molecular and morphological diversity of Narragansett Bay (RI, USA) Ulva (Ulvales, Chlorophyta) populations. J. Phycol. 49:979-995.
  9. Guiry, M. D. & Guiry, G. M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Aug 12, 2011.
  10. Han, W., Chen, L.-P., Zhang, J.-H., Tian, X.-L., Hua, L., He, Q., Huo, Y.-Z., Yu, K.-F., Shi, D.-J., Ma, J.-H. & He, P.-M. 2013. Seasonal variation of dominant free-floating and attached Ulva species in Rudong coastal area, China. Harmful Algae 28:46-54. https://doi.org/10.1016/j.hal.2013.05.018
  11. Hayden, H. S., Blomster, J., Maggs, C. A., Silva, P. C., Stanhope, M. J. & Waaland, J. R. 2003. Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. Eur. J. Phycol. 38:277-294. https://doi.org/10.1080/1364253031000136321
  12. Heesch, S., Broom, J., Neill, K., Farr, T., Dalen, J. & Nelson, W. 2007. Genetic diversity and possible origins of New Zealand populations of Ulva. Biosecurity New Zealand technical paper No. 2007/01. Ministry of Agriculture and Forestry, Wellington, pp. 70-80.
  13. Heesch, S., Broom, J. E. S., Neill, K. F., Farr, T. J., Dalen, J. L. & Nelson, W. A. 2009. Ulva, Umbraulva and Gemina: genetic survey of New Zealand taxa reveals diversity and introduced species. Eur. J. Phycol. 44:143-154. https://doi.org/10.1080/09670260802422477
  14. Hiraoka, M., Ichihara, K., Zhu, W., Ma, J. & Shimada, S. 2011. Culture and hybridization experiments on an Ulva clade including the Qingdao strain blooming in the Yellow Sea. PLoS ONE 6:e19371. https://doi.org/10.1371/journal.pone.0019371
  15. Huelsenbeck, J. P. & Ronquist, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  16. Huo, Y., Zhang, J., Chen, L., Hu, M., Yu, K., Chen, Q., He, Q. & He, P. 2013. Green algae blooms caused by Ulva prolifera in the southern Yellow Sea: identification of the original bloom location and evaluation of biological processes occurring during the early northward floating period. Limnol. Oceanogr. 58:2206-2218. https://doi.org/10.4319/lo.2013.58.6.2206
  17. Kim, J.-H., Kang, E. J., Park, M. G., Lee, B.-G. & Kim, K. Y. 2011. Effects of temperature and irradiance on photosynthesis and growth of a green-tide-forming species (Ulva linza) in the Yellow Sea. J. Appl. Phycol. 23:421-432. https://doi.org/10.1007/s10811-010-9590-y
  18. Kirkendale, L., Saunders, G. W. & Winberg, P. 2013. A molecular survey of Ulva (Chlorophyta) in temperate Australia reveals enhanced levels of cosmopolitanism. J. Phycol. 49:69-81. https://doi.org/10.1111/jpy.12016
  19. Koeman, R. P. T. 1985. The taxonomy of Ulva Linnaeus, 1753, and Enteromorpha Link, 1820, (Chlorophyceae) in the Netherlands. Ph.D. dissertation, University of Groningen, Groningen, The Netherlands, 201 pp.
  20. Kraft, L. G. K., Kraft, G. T. & Waller, R. F. 2010. Investigations into southern Australian Ulva (Ulvophyceae, Chlorophyta) taxonomy and molecular phylogeny indicate both cosmopolitanism and endemic cryptic species. J. Phycol. 46:1257-1277. https://doi.org/10.1111/j.1529-8817.2010.00909.x
  21. Leliaert, F., Zhang, X., Ye, N., Malta, E., Engelen, A. H., Mineur, F., Verbruggen, H. & De Clerck, O. 2009. Identity of the Qingdao algal bloom. Phycol. Res. 57:147-151. https://doi.org/10.1111/j.1440-1835.2009.00532.x
  22. Liu, D., Keesing, J. K., Dong, Z., Zhen, Y., Di, B., Shi, Y., Fearns, P. & Shi, P. 2010a. Recurrence of the world's largest greentide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar. Pollut. Bull. 60:1423-1432. https://doi.org/10.1016/j.marpolbul.2010.05.015
  23. Liu, D., Keesing, J. K., Xing, Q. & Shi, P. 2009. World's largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 58:888-895. https://doi.org/10.1016/j.marpolbul.2009.01.013
  24. Liu, F., Pang, S. J., Chopin, T., Xu, N., Shan, T. F., Gao, S. Q. & Sun, S. 2010b. The dominant Ulva strain of the 2008 green algal bloom in the Yellow Sea was not detected in the coastal waters of Qingdao in the following winter. J. Appl. Phycol. 22:531-540. https://doi.org/10.1007/s10811-009-9489-7
  25. Liu, F., Pang, S. J., Xu, N., Shan, T. F., Sun, S., Hu, X. & Yang, J. Q. 2010c. Ulva diversity in the Yellow Sea during the large-scale green algal blooms in 2008-2009. Phycol. Res. 58:270-279. https://doi.org/10.1111/j.1440-1835.2010.00586.x
  26. Liu, F., Pang, S. J., Zhao, X. B. & Hu, C. M. 2012. Quantitative, molecular and growth analyses of Ulva microscopic propagules in the coastal sediment of Jiangsu province where green tides initially occurred. Mar. Environ. Res. 74:56-63. https://doi.org/10.1016/j.marenvres.2011.12.004
  27. Maddison, D. R. & Maddison, W. P. 2003. MacClade, 4.06. Sinauer Associates, Sunderland, MA.
  28. Manhart, J. R. 1994. Phylogenetic analysis of green plant rbcL sequences. Mol. Phylogenet. Evol. 3:114-127. https://doi.org/10.1006/mpev.1994.1014
  29. Marshall, K., Joint, I., Callow, M. E. & Callow, J. A. 2006. Effect of marine bacterial isolates on the growth and morphology of axenic plantlets of the green Alga Ulva linza. Microb. Ecol. 52:302-310. https://doi.org/10.1007/s00248-006-9060-x
  30. Pang, S. J., Liu, F., Shan, T. F., Xu, N., Zhang, Z. H., Gao, S. Q., Chopin, T. & Sun, S. 2010. Tracking the algal origin of the Ulva bloom in the Yellow Sea by a combination of molecular, morphological and physiological analyses. Mar. Environ. Res. 69:207-215. https://doi.org/10.1016/j.marenvres.2009.10.007
  31. Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-818. https://doi.org/10.1093/bioinformatics/14.9.817
  32. Provasoli, L. & Pintner, I. J. 1980. Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J. Phycol. 16:196-201. https://doi.org/10.1111/j.1529-8817.1980.tb03019.x
  33. Saunders, G. W. & Kucera, H. 2010. An evaluation of rbcL, tufA, UPA, LSU and ITS as DNA barcode markers for the marine green macroalgae. Cryptogam. Algol. 31:487-528.
  34. Shimada, S., Yokoyama, N., Arai, S. & Hiraoka, M. 2008. Phylogeography of the genus Ulva (Ulvophyceae, Chlorophyta), with special reference to the Japanese freshwater and brackish taxa. J. Appl. Phycol. 20:979-989. https://doi.org/10.1007/s10811-007-9296-y
  35. Son, Y. B., Choi, B. -J., Kim, Y. H. & Park, Y. -G. 2015. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using GOCI satellite data and Lagrangian transport simulations. Remote Sens. Environ. 156:21-33. https://doi.org/10.1016/j.rse.2014.09.024
  36. Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA.
  37. Tan, I. H., Blomster, J., Hansen, G., Leskinen, E., Maggs, C. A., Mann, D. G., Sluiman, H. J. & Stanhope, M. J. 1999. Molecular phylogenetic evidence for a reversible morphogenetic switch controlling the gross morphology of two common genera of green seaweeds, Ulva and Enteromorpha. Mol. Biol. Evol. 16:1011-1018. https://doi.org/10.1093/oxfordjournals.molbev.a026190
  38. Wang, J., Jiang, P., Cui, Y., Li, N., Wang, M., Lin, H., He, P. & Qin, S. 2010. Molecular analysis of green-tide-forming macroalgae in the Yellow Sea. Aquat. Bot. 93:25-31. https://doi.org/10.1016/j.aquabot.2010.03.001
  39. Zhang, X., Xu, D., Mao, Y., Li, Y., Xue, S., Zou, J., Lian, W., Liang, C., Zhuang, Z., Wang, Q. & Ye, N. 2011. Settlement of vegetative fragments of Ulva prolifera confirmed as an important seed source for succession of a large-scale green tide bloom. Limnol. Oceanogr. 56:233-242. https://doi.org/10.4319/lo.2011.56.1.0233

Cited by

  1. Bloom of a Filamentous Green Alga Cladophora vadorum (Areschoug) Kützing and Nutrient Levels at Shangrok Beach, Buan, Korea vol.49, pp.2, 2016, https://doi.org/10.5657/KFAS.2016.0241
  2. Diversity and enzyme activity of Penicillium species associated with macroalgae in Jeju Island vol.54, pp.10, 2016, https://doi.org/10.1007/s12275-016-6324-0
  3. Adaptations of a green tide formingUlva linza(Ulvophyceae, Chlorophyta) to selected salinity and nutrients conditions mimicking representative environments in the Yellow Sea vol.55, pp.2, 2016, https://doi.org/10.2216/15-67.1
  4. First record of red macroalgae bloom in Southern Atlantic Brazil vol.31, pp.1, 2016, https://doi.org/10.4490/algae.2016.31.3.5
  5. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera vol.35, pp.10, 2016, https://doi.org/10.1007/s13131-016-0891-0
  6. Species-specific responses of temperate macroalgae with different photosynthetic strategies to ocean acidification: a mesocosm study vol.31, pp.3, 2016, https://doi.org/10.4490/algae.2016.31.8.20
  7. Genetic diversity of Ulva prolifera population in Qingdao coastal water during the green algal blooms revealed by microsatellite vol.111, pp.1-2, 2016, https://doi.org/10.1016/j.marpolbul.2016.07.001
  8. Effects of future climate conditions on photosynthesis and biochemical component of Ulva pertusa (Chlorophyta) vol.31, pp.1, 2016, https://doi.org/10.4490/algae.2016.31.3.9
  9. The exceptionally large genome of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae): determination by flow cytometry vol.31, pp.4, 2016, https://doi.org/10.4490/algae.2016.31.12.6
  10. vol.39, pp.1, 2018, https://doi.org/10.7872/crya/v39.iss1.2018.85
  11. Anti-inflammatory Effects of Polyphenol Extracts from Ulva linza (Ulvophyceae, Chlorophyta) vol.10, pp.3, 2018, https://doi.org/10.1007/s13530-018-0366-0
  12. (Ulvophyceae, Chlorophyta) based on specimens from the type locality and Yellow Sea green tides vol.57, pp.6, 2018, https://doi.org/10.2216/17-139.1
  13. 황해 부유 녹조 면적 산출을 위한 멀티 위성센서 활용 vol.34, pp.2, 2014, https://doi.org/10.7780/kjrs.2018.34.2.2.4
  14. Future CO 2 -induced seawater acidification mediates the physiological performance of a green alga Ulva linza in different photoperiods vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7048
  15. Taxonomy of Ulva causing blooms from Jeju Island, Korea with new species, U. pseudo-ohnoi sp. nov. (Ulvales, Chlorophyta) vol.34, pp.4, 2014, https://doi.org/10.4490/algae.2019.34.12.9
  16. Occurrence and pathogenicity of Pythium (Oomycota) on Ulva species (Chlorophyta) at different salinities vol.35, pp.1, 2014, https://doi.org/10.4490/algae.2020.35.2.25
  17. Molecular genetic diversity of seaweeds morphologically related to Ulva rigida at three sites along the French Atlantic coast vol.9, pp.None, 2014, https://doi.org/10.7717/peerj.11966
  18. Ulva L. (Ulvales, Chlorophyta) from Manawatāwhi/ Three Kings Islands, New Zealand: Ulva piritoka Ngāti Kuri, Heesch & W.A.Nelson, sp. nov. and Records of Two Nonnative Species, U. comp vol.42, pp.9, 2021, https://doi.org/10.5252/cryptogamie-algologie2021v42a9
  19. Multiple genetic marker analysis challenges the introduction history of Ulva australis (Ulvales, Chlorophyta) on French coasts vol.56, pp.4, 2014, https://doi.org/10.1080/09670262.2021.1876249
  20. Exhaustive reanalysis of barcode sequences from public repositories highlights ongoing misidentifications and impacts taxa diversity and distribution vol.22, pp.1, 2014, https://doi.org/10.1111/1755-0998.13453
  21. Development of an efficiency criterion for the removal of pest organisms (ulvoid green algae and diatoms) from Neopyropia aquaculture using the acid wash (pH shock) method vol.548, pp.p2, 2022, https://doi.org/10.1016/j.aquaculture.2021.737677