DOI QR코드

DOI QR Code

휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio

  • 문주현 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Mun, Ju-Hyun (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 투고 : 2014.03.12
  • 심사 : 2014.10.31
  • 발행 : 2014.12.31

초록

이 연구에서는 철근콘크리트 전단벽의 경계요소의 연성설계를 위한 변위연성비모델을 제시하였다. 부재의 길이에 따른 곡률과 자유단에서의 변위를 산정하기 위한 전단벽의 단면의 변형률 및 내부힘들의 분포는 베르누이(Bernoulli)의 정리, 변형률 적합조건 및 힘의 평형조건을 이용하여 이상화하였다. 경계요소내의 횡보강근에 의한 구속효과는 Razvi and Saatcioglu에 의해 제시된 콘크리트의 응력-변형률 관계를 이용하여 고려하였다. 항복시 및 최대내력 이후 최대모멘트 80%에서의 곡률은 등가소성 힌지길이 개념을 도입하여 변위값으로 환산하였다. 일반화된 변위연성비의 모델은 다양한 범위에서 수행된 변수연구로부터 얻어진 데이터들의 회귀분석을 통하여 단순식으로 정립되었다. 제시된 단순모델은 실험결과 대비 평균, 표준편차 및 변동계수가 각각 1.05, 0.19 및 0.18로 대부분의 실험결과의 경향을 잘 예측하였다. 따라서 제시된 모델은 경계요소에서 소요연성비에 따른 횡보강근의 상세를 결정하는데 쉽게 이용될 수 있을 것으로 기대된다.

This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

키워드

참고문헌

  1. Park, R. and Paulay, T., "Reinforced Concrete Structures", Wiley Interscience Publication, New Jersey, USA, 1933, pp. 769.
  2. Paulay, T. and Priestley, M. J. N., "Seismic Design of Reinforced Concrete and Masonry Buildings", Wiley Interscience Publication, New Jersey, USA, 1992, pp. 768.
  3. Kang, S.M. and Park, H.G., "Ductility Confinement of RC Rectangular Shear Wall", Journal of Korea Concrete Institute, Vol. 14, No. 4, 2002, pp. 530-539. https://doi.org/10.4334/JKCI.2002.14.4.530
  4. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318M-11) and Commentary", American Concrete Institute, Farmington Hills, Michigan, USA, 2011, pp. 503.
  5. European Standard EN 1992-1-1:2004, "Eurocode 2 : Design of Concrete Structures", British Standard, Brussels, Belgium, 2004, pp. 225.
  6. Bertero, V.V., "Design Guidlines for Ductility and Drift Limits: Review of State-of-the-practice and State-of-the-art in Ductility and Drift-based Earthquake-resistant Design of Buildings", Report No. EERC-91/15, 1991, pp. 149.
  7. Sheikh, S.A. and Khoury, S.S., "Confined Concrete Columns with Stubs", ACI Journal, Vol. 90, No. 4, 1993, pp. 414-431.
  8. Razvi, S. and Saatcioglu, M., "Confinement Model for High-Strength Concrete", Journal of Structural Engineering, ASCE, Vol. 125, No. 3, 1999, pp. 281-289. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:3(281)
  9. Watson, S., Zahn, F.A., and Park, R., "Confining Reinforced for Concrete Columns", Journal of Structural Engineering, ASCE, Vol. 120, No. 6, 1994, pp. 1798-1824. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:6(1798)
  10. Yang, K.H., "Development of Performance-Based Design Guideline for High-Density Concrete Walls", Technical Report (2nd. year), Kyonggi University, 2013, pp. 115.
  11. Mun, J.H. and Yang, K.H., "Equivalent Plastic Hinge Length Model for Reinforced Concrete Shear Walls with Boundary Elements", Journal of the Korea Institute for Structural Maintenance and Inspection, Vol. 80, No. 2, 2014. under published.
  12. Pilakoutas, K. and Elnashai, A., "Cyclic Behavior of Reinforced Concrete Cantilever Walls, Part I: Experimental Results", ACI Structural Journal, Vol. 92, No. 3, 1995, pp. 271-281.
  13. Oesterle, R.G., Fiorato, A.E., Johal, L.S., Carpenter, J.E., Russell, H.G., and Corley, W.G., "Earthquake Resistant Structural Walls - Tests of Isolated Walls", Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, IL, 1976, pp. 233.
  14. Oesterle, R.G., Aristizasbal-Ochoa, J.D., Fiorato, A.E., Russell, H.G., and Corley, W.G., "Earthquake Resistant Structural Walls - Tests of Isolated Walls Phase II", Report to National Science Foundation, Construction Technology Laboratories, Portland Cement Association, Skokie, IL, 1979, pp. 208.
  15. Ali, A. and Wight, J. K., "RC Structural Walls with Staggered Door Openings", Journal of Structural Engineering, ASCE, Vol. 117, No. 5, 1991, pp. 1514-1531. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:5(1514)
  16. Thomsen IV, J.H. and Wallace, J. H., "Displacement-Based Design of Slender Reinforced Concrete Structural Walls- Experimental Verification", Journal of Structural Engineering, ASCE, Vol. 130, No. 4, 2004, pp. 618-630. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(618)
  17. Kim, L.B., "Seismic Performance of Free-Edge Wall-Ends with Interlocking Spiral Reinforcement", M.S. Thesis, Department of Architecture, Seoul National University, South Korea, 2001, pp. 88.
  18. Zhang, Y. and Wang, Z., "Seismic Behavior of Reinforced Concrete Shear Walls Subjected to High Axial Loading", ACI Structural Journal, Vol. 97, No. 5, 2000, pp. 739-749.
  19. Hirosawa, M., "Past Experimental Results on Reinforced Concrete Shear Walls and Analysis on them", Kenchiku Kenkyu Shiryo No. 6, Building Research Institute, Ministry of Construction, Japan, 1975, pp. 277.
  20. Kim, M.J., "An Experimental Study on Boundary Element Reinforcements of High-Strength Concrete Bearing Walls", Ph.D. thesis, Program in Architectural Engineering, Konkuk University, South Korea, 1998, pp. 83.