Characterizations of Zero-Term Rank Preservers of Matrices over Semirings

Kyung-Tae Kang and Seok-Zun Song*
Department of Mathematics, Jeju National University, Jeju 690-756, Korea
e-mail: kangkt@jejunu.ac.kr and szsong@jejunu.ac.kr
LeRoy B. Beasley
Department of Mathematics and Statistics, Utah State University, Logan, Utah 84322-3900, USA
e-mail: leroy.b.beasley@aggiemail.usu.edu
Luis Hernandez Encinas
Department of Information Processing and Cryptography, Institute of Physical and Information Technologies, Spanish National Research Council, C / Serrano 144, 28006-Madrid, Spain
e-mail: luis@iec.csic.es

Abstract. Let $\mathcal{N}(S)$ denote the set of all $m \times n$ matrices over a semiring S. For $A \in \mathcal{M}(S)$, zero-term rank of A is the minimal number of lines (rows or columns) needed to cover all zero entries in A. In [5], the authors obtained that a linear operator on $\mathcal{M}(S)$ preserves zero-term rank if and only if it preserves zero-term ranks 0 and 1 . In this paper, we obtain new characterizations of linear operators on $\mathcal{M}(S)$ that preserve zero-term rank. Consequently we obtain that a linear operator on $\mathcal{M}(S)$ preserves zero-term rank if and only if it preserves two consecutive zero-term ranks k and $k+1$, where $0 \leq k \leq \min \{m, n\}-1$ if and only if it strongly preserves zero-term rank h, where $1 \leq h \leq \min \{m, n\}$.

1. Introduction and Preliminaries

A semiring ([2]) is a set S equipped with two binary operations + and \cdot such that $(S,+)$ is a commutative monoid with identity element 0 and (S, \cdot) is a monoid with identity element 1 . In addition, operations + and \cdot are connected by distributivity and 0 annihilates S. Thus all rings with identity are semirings.

[^0]A semiring S is commutative if (S, \cdot) is Abelian; S is antinegative if 0 is the only element to have an additive inverse. Thus, no ring is antinegative semiring except $\{0\}$. The following are some examples of semirings which occur in combinatorics. Let $\mathbb{B}=\{0,1\}$. Then $(\mathbb{B},+, \cdot)$ is a semiring (the binary Boolean semiring) if arithmetic in \mathbb{B} follows the usual rules except that $1+1=1$. If \mathbb{F} is the real interval $[0,1]$, then $(\mathbb{F},+, \cdot)=(\mathbb{F}, \max , \min)$ is a semiring (the fuzzy semiring). If \mathbb{P} is any subring with identity, of \mathbb{R}, the reals (under real addition and multiplication), and \mathbb{P}_{+}denotes the nonnegative part of \mathbb{P}, then \mathbb{P}_{+}is a semiring. In particular \mathbb{Z}_{+}, the nonnegative integers, is a semiring. These are all commutative and antinegative semirings.

Hereafter, S will denote an arbitrary commutative and antinegative semiring. Let $\mathcal{N}(S)$ be the set of all $m \times n$ matrices with entries in a semiring S. The matrix $O_{m, n}$ is the $m \times n$ zero matrix and the matrix $J_{m, n}$ is the $m \times n$ matrix all of whose entries are 1. We will suppress the subscripts on these matrices when the orders are evident from the context and we write O and J, respectively. Algebraic operations on $\mathcal{M}(S)$ are defined as if the underlying scalars were in a field.

The zero-term rank, $z(A)$, of $A \in \mathcal{N}(S)$ is the minimal number k of lines (rows or columns) needed to cover all zero entries in A. That is, $z(A)$ is the minimal number k such that all zero entries of A are contained in r rows and $k-r$ columns. The term rank, $t(A)$, of A is the minimal number k of lines (rows or columns) needed to cover all nonzero entries in A.

From now on we will assume that $2 \leq m \leq n$ unless specified otherwise. It follows that $0 \leq z(A) \leq m$ for all $A \in \mathcal{M}(S)$. Evidently we have that

$$
z(O)=t(J)=m \quad \text { and } \quad z(J)=t(O)=0
$$

An operator $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ is called linear if $T(\alpha A+\beta B)=\alpha T(A)+\beta T(B)$ for all $A, B \in \mathcal{M}(S)$ and for all $\alpha, \beta \in S$. Let $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ be a linear operator. If f is a function defined on $\mathcal{M}(S)$, then T preserves the function f if $f(T(A))=f(A)$ for all $A \in \mathcal{M}(S)$. There are many papers on linear operators that preserve matrix functions over S (see [1]-[6] and therein). Beasley and Pullman([3]) characterized linear operators on $\mathcal{M}(S)$ that preserve term rank. Recently Beasely, Kang and Song([6]) extended their results and obtained new characterizations of linear operators on $\mathcal{M}(S)$ that preserve term rank. But there are few papers on zero-term rank preservers of matrices over S. Beasley, Song and Lee([5]) have characterized linear operators on $\mathcal{M}(S)$ that preserve zero-term rank as following:
Theorem 1.1.([5]) For a linear operator $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$, the following are equivalent:
(i) T preserves zero-term rank;
(ii) T preserves zero-term rank 1 and $J \sqsubseteq T(J)$;
(iii) T is a (P, Q, B)-operator.

We note that the condition (ii) in Theorem 1.1 means that T preserves zero-term ranks 0 and 1 (see Lemma 2.2).

In this paper, we generalize the conditions of Theorem 1.1 to any two consecutive zero-term rank preservers. Furthermore we obtain other characterizations of the zero-term rank preservers.

2. Preliminary

If A and B are matrices in $\mathcal{M}(S)$, we say that B dominates A (written $A \sqsubseteq B$ or $B \sqsupseteq A$) if $b_{i, j}=0$ implies $a_{i, j}=0$ for all i and j. This provides a reflexive and transitive relation on $\mathcal{M}(S)$.

Lemma 2.1. For matrices A and B in $\mathcal{M}(S)$, we have:
(i) $z(A+B) \leq z(A)+z(B)$;
(ii) if $A \sqsubseteq B$, then $z(B) \leq z(A)$;
(iii) if $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ is a linear operator and $A \sqsubseteq B$, then $T(A) \sqsubseteq T(B)$.

Proof. The results follow from the definitions of both zero-term rank and linear operator.

For a linear operator $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ and $0 \leq k \leq m$, we say that
(1) T preserves zero-term rank k if $z(T(X))=k$ whenever $z(X)=k$ for all X;
(2) T preserves zero-term rank if $z(T(X))=z(X)$ for all X.

Lemma 2.2. Suppose that $T: \mathcal{N}(S) \rightarrow \mathcal{M}(S)$ is a linear operator. Then $J \sqsubseteq T(J)$ if and only if T preserves zero-term rank 0 .
Proof. Suppose that $J \sqsubseteq T(J)$ and A is any matrix in $\mathcal{M}(S)$ with $z(A)=0$. Clearly $J \sqsubseteq A$ and hence Lemma 2.1(iii) implies that $J \sqsubseteq T(J) \sqsubseteq T(A)$. That is, $z(T(A))=0$. Therefore T preserves zero-term rank 0 . The converse is obvious.

A matrix in $\mathcal{M}(S)$ is called a cell if it has exactly one 1 entry. We denote the cell whose one 1 entry is in the $(i, j)^{t h}$ position by $E_{i, j}$. Further we let $\mathcal{E}_{m, n}$ be the set of all cells in $\mathcal{M}(S)$. That is, $\mathcal{E}_{m, n}=\left\{E_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$.

Let \mathbb{B} be the binary Boolean semiring and $\mathcal{M}(\mathbb{B})$ be the set of all $m \times n$ Boolean matrices with entries in \mathbb{B}.
Lemma 2.3. ([1]) If $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a linear operator, then T is invertible if and only if T permute $\mathcal{E}_{m, n}$.

An $m \times n$ matrix L is called a line matrix if $L=\sum_{l=1}^{n} E_{i, l}$ for some $i \in\{1, \ldots, m\}$ or $L=\sum_{s=1}^{m} E_{s, j}$ for some $j \in\{1, \ldots, n\}: R_{i}=\sum_{l=1}^{n} E_{i, l}$ is the i th row matrix and $C_{j}=\sum_{s=1}^{m} E_{s, j}$ is the j th column matrix.

For matrices A and B in $\mathcal{M}(S)$, the matrix $A \circ B$ denotes the Hadamard or Schur product. That is, the (i, j) th entry of $A \circ B$ is $a_{i, j} b_{i, j}$. A nonzero $s \in S$ is a zero divisor if $s^{\prime} s=0$ for some nonzero $s^{\prime} \in S$.

If P and Q are permutation matrices of orders m and n, respectively, and B is a matrix in $\mathcal{M}(S)$ none of whose entries is a zero divisor or zero, then an operator $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ is called a (P, Q, B)-operator if $T(X)=P(X \circ B) Q$ for all X, or $m=n$ and $T(X)=P\left(X^{t} \circ B\right) Q$ for all X, where X^{t} denotes the transpose of X. If $B=J$ we say that T is a (P, Q)-operator.

The number of nonzero entries of a matrix $A \in \mathcal{M}(S)$ is denoted by $\sharp(A)$.
For a linear operator T on $\mathcal{N}(S)$, we say that T preserves all line matrices if $T(L)$ is a line matrix for all line matrix L.
Lemma 2.4. Assume that $T: \mathcal{N}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is an invertible linear operator. Then T preserves all line matrices if and only if T is a (P, Q)-operator.
Proof. By Lemma 2.3, T permutes $\mathcal{E}_{m, n}$. Suppose that T preserves all line matrices and let $\mathcal{R}=\left\{R_{1}, \ldots, R_{m}\right\}$ and $\mathcal{C}=\left\{C_{1}, \ldots, C_{n}\right\}$. Now we will claim that either
(1) T maps \mathcal{R} onto \mathcal{R} and maps \mathcal{C} onto \mathcal{C}, or
(2) T maps \mathcal{R} onto \mathcal{C} and maps \mathcal{C} onto \mathcal{R}.

If $m \neq n,(1)$ is satisfied since T preserves all line matrices. Thus we assume that $m=n$. Suppose that the claim is not true. Then there are two row matrices R_{i} and R_{j} such that $T\left(R_{i}\right) \in \mathcal{R}$ and $T\left(R_{j}\right) \in \mathcal{C}$. But then $\sharp\left(R_{i}+R_{j}\right)=2 n$, while $\sharp\left(T\left(R_{i}+R_{j}\right)\right)=2 n-1$, a contradiction to the fact that T is invertible. Hence the claim is true.

If (1) holds, there are permutations α and β of $\{1, \ldots, m\}$ and $\{1, \ldots, n\}$, respectively, such that $T\left(R_{i}\right)=R_{\alpha(i)}$ for all i and $T\left(C_{j}\right)=C_{\beta(j)}$ for all j. Let P and Q be the permutation matrices corresponding to α and β, respectively. Then we have that

$$
T\left(E_{i, j}\right)=E_{\alpha(i), \beta(j)}=P E_{i, j} Q
$$

for all cells $E_{i, j}$. By the action of T on $\mathcal{E}_{m, n}$, we have that $T(X)=P X Q$ for all X. Hence T is a (P, Q)-operator. If (2) holds, then $m=n$ and a parallel argument shows that there are permutation matrices P and Q of order n such that $T(X)=P X^{t} Q$ for all X. Thus T is a (P, Q)-operator.

The converse is obvious.
For Boolean matrices A and B in $\mathcal{M}(\mathbb{B})$ with $B \sqsubseteq A$, we define $A \backslash B$ to be the matrix C such that $c_{i, j}=\left\{\begin{aligned} 0 & \text { if } b_{i, j} \neq 0 \\ a_{i, j} & \text { otherwise. }\end{aligned}\right.$
Theorem 2.5. Suppose that $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{N}(\mathbb{B})$ is an invertible linear operator and $1 \leq k \leq m$. Then T preserves zero-term rank k if and only if T is a (P, Q)-operator.

Proof. By Lemma 2.3, T permutes $\mathcal{E}_{m, n}$. Assume that T preserves zero-term rank k, where $1 \leq k \leq m$. Since T permutes $\mathcal{E}_{m, n}$, we have that $T(J)=J$ and hence $J \sqsubseteq T(J)$. Thus by Theorem , T is a (P, Q)-operator for the case of $k=1$. Now let $k \geq 2$. Suppose that T does not preserve a line matrix. Then there are two cells E and F that are not dominated by the same line matrix such that $T(E)$ and
$T(F)$ are dominated by the same line matrix. Without loss of generality, we may assume that $T\left(E_{1,1}+E_{2,2}\right)=E_{1,1}+E_{1,2}$. Let $A=E_{1,1}+E_{2,2}+\cdots E_{k, k}$ so that $z(J \backslash A)=k$. Since at least two cells in $T(A)$ are dominated by the same line matrix, we have that $z(T(J \backslash A))=z(J \backslash T(A)) \leq k-1$. This is a contradiction to the fact that T preserves zero-term rank k. Therefore T must preserve all line matrices. Thus T is a (P, Q)-operator by Lemma 2.4.

The converse is obvious.

3. Zero-Term Rank Preservers of Boolean Matrices

In this section, we give necessary and sufficient conditions for a linear operator $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ to preserve zero-term rank.

An operator $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ is singular if $T(X)=O$ for some nonzero $X \in \mathcal{N}(S)$; otherwise T is nonsingular. Evidently every (P, Q, B)-operator on $\mathcal{N}(S)$ is nonsingular. In particular, if $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a singular linear operator, then we can easily check that $T(E)=O$ for some cell E.

Example 3.1. For $0 \leq k \leq m$, let $A=J \backslash\left(E_{1,1}+E_{2,2}+\cdots+E_{k, k}\right)$. Define an operator $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ by $T(O)=O$ and $T(X)=A$ for all nonzero $X \in \mathcal{M}(\mathbb{B})$. Clearly, T is linear, nonsingular and preserves zero-term rank k since $z(A)=k$. But T does not preserve zero-term rank.

The above Example implies that the condition on T that it preserves a zeroterm rank k is not sufficient for T to be a zero-term rank preserver. So we want to find some conditions for T to be a zero-term rank preserver.

For a linear operator $T: \mathcal{N}(S) \rightarrow \mathcal{M}(S)$ and $0 \leq l \leq m$, we say that T strongly preserves zero-term rank l if $z(T(X))=l$ if and only if $z(X)=l$ for all X.
Lemma 3.2. Let $0 \leq k \leq m-1$ and $0 \leq l \leq m$. Assume that $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a linear operator. If
(i) T preserves zero-term ranks k and $k+1$, or
(ii) T strongly preserves zero-term rank l,
then T is nonsingular.
Proof. If T is singular, then $T(E)=O$ for some cell E. Without loss of generality, we assume that $T\left(E_{1,1}\right)=O$ so that $T(J)=T\left(J \backslash E_{1,1}\right)$. Notice that $z(J)=0$ and $z\left(J \backslash E_{1,1}\right)=1$. Hence we have a contradiction for the case of $k=0$ and $l \in\{0,1\}$. Thus we assume that $k \geq 1$ and $l \geq 2$. Let $A=\sum_{i=1}^{k+1} E_{i, i}$. Then $z(J \backslash A)=k+1$ and $z\left(J \backslash A+E_{1,1}\right)=k$. But $T(J \backslash A)=T\left(J \backslash A+E_{1,1}\right)$ contradicts the condition (i). Let $B=\sum_{i=1}^{l} E_{i, i}$. Then $z(J \backslash B)=l$ and $z\left(J \backslash B+E_{1,1}\right)=l-1$. But $T(J \backslash B)=T\left(J \backslash B+E_{1,1}\right)$ contradicts the condition (ii).
Hence T is nonsingular.

For $0 \leq k \leq m$, we let $\mathbb{D}_{k}=\left[d_{i, j}\right]$ be a Boolean matrix in $\mathcal{M}(\mathbb{B})$ such that $d_{i, j}=0$ if and only if $i+j \leq k+1$. Then we have that $z\left(\mathbb{D}_{k}\right)=k$. Notice that if $1 \leq k \leq m-1$ then we have that $z\left(\mathbb{D}_{k+1}\right)=k+1$, while $z\left(\mathbb{D}_{k+1}+E_{2, k}\right)=k$ since all zero entries of $\mathbb{D}_{k+1}+E_{2, k}$ are contained in the first row and the first $k-1$ columns. Similarly $z\left(\mathbb{D}_{k+1}+E_{k, 2}\right)=k$. For example, consider the 5×6 matrix

$$
\mathbb{D}_{4}=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Then $z\left(\mathbb{D}_{4}\right)=4$ and $z\left(\mathbb{D}_{4}+E_{2,3}\right)=z\left(\mathbb{D}_{4}+E_{3,2}\right)=3$.
Lemma 3.3. Let $m \geq 3$ and $1 \leq k \leq m-1$. If $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a linear operator that preserves zero-term ranks k and $k+1$, then $\sharp\left(T\left(E_{i, j}\right)\right)=1$ for all cells $E_{i, j}$.
Proof. By Lemma 3.2(i), T is nonsingular and hence $\sharp\left(T\left(E_{i, j}\right)\right) \geq 1$ for all cells $E_{i, j}$. Suppose that $\sharp(T(E)) \geq 2$ for some cell E. By permuting we may assume that $T(E) \sqsupseteq E+F$ for some cell $F \neq E$.

If E and F are in the same row, we may assume by permuting that $E=E_{2, k+1}$ and $F=E_{2, k}$. If E and F are in the same column, we may assume by permuting that $E=E_{k+1,2}$ and $F=E_{k, 2}$. If E and F are in different rows and different columns, we may assume by permuting that $E=E_{3, k+1}$ and $F=E_{2, k}$. Then we have that $E \sqsubseteq \mathbb{D}_{k+1}$ and $F \nsubseteq \mathbb{D}_{k+1}$. It follows that $z\left(\mathbb{D}_{k+1}+E\right)=k+1$ and $z\left(\mathbb{D}_{k+1}+F\right)=k$.

Let $L=T^{d}$ where d is chosen so that $L: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is an idempotent operator $\left(L^{2}=L\right)$. Then we can easily check that L preserves zero-term ranks k and $k+1$, and $L(E) \sqsupseteq E+F$. Since $L(E)=F+X$ for some matrix $X \in \mathcal{M}(\mathbb{B})$, we have that

$$
L(E)+F=(F+X)+F=F+X=L(E) .
$$

Since L is idempotent, we have that $L(E)=L^{2}(E)=L(L(E))=L(L(E)+F)=$ $L^{2}(E)+L(F)=L(E)+L(F)=L(E+F)$. It follows that $L\left(\mathbb{D}_{k+1}+E\right)=$ $L\left(\mathbb{D}_{k+1}+E+F\right)$, equivalently, $L\left(\mathbb{D}_{k+1}\right)=L\left(\mathbb{D}_{k+1}+F\right)$ since $E \sqsubseteq \mathbb{D}_{k+1}$. This is a contradiction to the fact that L preserves zero-term ranks k and $k+1$ since $z\left(\mathbb{D}_{k+1}\right)=k+1$ and $z\left(\mathbb{D}_{k+1}+F\right)=k$. Hence we have that $\sharp\left(T\left(E_{i, j}\right)\right)=1$ for all cells $E_{i, j}$.

Theorem 3.4. Let $m \geq 3$ and $0 \leq k \leq m-1$. Suppose that $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a linear operator. Then T preserves zero-term rank if and only if T preserves zero-term ranks k and $k+1$.

Proof. By Theorem 1.1 and Lemma 2.2, the result is obvious for the case of $k=0$. Now consider the case $k \geq 1$. Assume that T preserves zero-term ranks k and $k+1$. Then $\sharp\left(T\left(E_{i, j}\right)\right)=1$ for all cells $E_{i, j}$ by Lemma 3.3. Now, suppose that T is not
invertible. Then $T(E)=T(F)$ for some distinct cells E and F by Lemma 2.3. If E and F are in the same row, we may assume by permuting that $E=E_{2, k+1}$ and $F=E_{2, k}$. If E and F are in the same column, we may assume by permuting that $E=E_{k+1,2}$ and $F=E_{k, 2}$. If E and F are in different rows and different columns, we may assume by permuting that $E=E_{3, k+1}$ and $F=E_{2, k}$. Then we have that $E \sqsubseteq \mathbb{D}_{k+1}$ and $F \nsubseteq \mathbb{D}_{k+1}$. It follows that $z\left(\mathbb{D}_{k+1}+E\right)=k+1$ and $z\left(\mathbb{D}_{k+1}+F\right)=k$. But then $T\left(\mathbb{D}_{k+1}+E\right)=T\left(\mathbb{D}_{k+1}+F\right)$, a contradiction to the fact that T preserves zero-term ranks k and $k+1$. Hence T must be invertible. By Theorem 2.5, T is a (P, Q)-operator and hence T preserves zero-term rank by Theorem 1.1.

The converse is obvious.
Lemma 3.5. If $T: \mathcal{N}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a linear operator that strongly preserves zero-term rank 1, then T preserves zero-term rank.
Proof. Suppose that $J \nsubseteq T(J)$. Since T strongly preserves zero-term rank 1, we have that $z(T(J)) \geq 2$. Let $E_{i, j}$ be an arbitrary cell. Then $T\left(J \backslash E_{i, j}\right) \sqsubseteq T(J)$ and hence by Lemma 2.1(ii), we have that $z\left(T\left(J \backslash E_{i, j}\right)\right) \geq z(T(J)) \geq 2$, a contradiction since $z\left(J \backslash E_{i, j}\right)=1$. Thus we have that $J \sqsubseteq T(J)$. By Theorem, T preserves zero-term rank.

Theorem 3.6. Let $m \geq 3$ and $1 \leq l \leq m$. Suppose that $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is a linear operator. Then T preserves zero-term rank if and only if T strongly preserves zero-term rank l.

Proof. For $1 \leq l \leq m$, assume that T strongly preserves zero-term rank l. If $l=1$, then T preserves zero-term rank by Lemma 3.5. So we assume that $l \geq 2$. Then T is nonsingular by Lemma $3.2(\mathrm{ii})$ and hence $\sharp\left(T\left(E_{i, j}\right)\right) \geq 1$ for all cells $E_{i, j}$.

First, suppose that $\sharp(T(E)) \geq 2$ for some cell E. By permuting we may assume that $T(E) \sqsupseteq E+F$ for some cell $F \neq E$. If E and F are in the same row, we may assume by permuting that $E=E_{2, l}$ and $F=E_{2, l-1}$. If E and F are in the same column, we may assume by permuting that $E=E_{l, 2}$ and $F=E_{l-1,2}$. If E and F are in different rows and different columns, we may assume by permuting that $E=E_{3, l}$ and $F=E_{2, l-1}$. Then we have that $E \sqsubseteq \mathbb{D}_{l}$ and $F \nsubseteq \mathbb{D}_{l}$. It follows that $z\left(\mathbb{D}_{l}+E\right)=l$ and $z\left(\mathbb{D}_{l}+F\right)=l-1$.

Let $L=T^{d}$ where d is chosen so that $L: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ is an idempotent operator. Then we can easily check that L strongly preserves zero-term ranks l and $L(E) \sqsupseteq E+F$. By the similar argument in the proof of Lemma 3.3, we have that $L\left(\mathbb{D}_{l}\right)=L\left(\mathbb{D}_{l}+F\right)$, a contradiction to the fact that T strongly preserves zero-term rank l. Hence we have established that $\sharp\left(T\left(E_{i, j}\right)\right)=1$ for all cells $E_{i, j}$.

Next, suppose that T is not invertible. Then $T(E)=T(F)$ for some distinct cells E and F by Lemma 2.3. By the similar argument in the proof of Theorem, we have that $T\left(\mathbb{D}_{l}+E\right)=T\left(\mathbb{D}_{l}+F\right)$ with $z\left(\mathbb{D}_{l}+E\right)=l$ and $z\left(\mathbb{D}_{l}+F\right)=l-1$, a contradiction to the fact that T strongly preserves zero-term rank l. Thus T must be invertible. By Theorem 2.5, T is a (P, Q)-operator and hence T preserves zero-term rank by Theorem 1.1.

The converse is obvious.

If we combine three Theorems 1.1, 3.4 and 3.6 , we obtain that:
Theorem 3.7. Let $m \geq 3$. For a linear operator $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$, the following are equivalent:
(i) T preserves zero-term rank;
(ii) T preserves zero-term ranks k and $k+1$, where $0 \leq k \leq m-1$;
(iii) T strongly preserves zero-term rank l, where $1 \leq l \leq m$;
(iv) T is a (P, Q)-operator.

We remarks that the condition $m \geq 3$ is essential in the Theorem 3.7. For $m=2$, the conditions (ii) or (iii) in the Theorem 3.7 may not imply the condition (i). Consider the cases of $k=m-1=1$ and $l=m=2$, respectively. Let $\mathcal{M}(\mathbb{B})$ be the set of all 2×2 Boolean matrices. Define $T: \mathcal{M}(\mathbb{B}) \rightarrow \mathcal{M}(\mathbb{B})$ by

$$
T\left(E_{1,1}\right)=T\left(E_{2,2}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] \quad \text { and } \quad T\left(E_{1,2}\right)=T\left(E_{2,1}\right)=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],
$$

equivalently, $T\left(\left[\begin{array}{ll}x_{1,1} & x_{1,2} \\ x_{2,1} & x_{2,2}\end{array}\right]\right)=\left[\begin{array}{cc}x_{1,1}+x_{2,2} & x_{1,2}+x_{2,1} \\ x_{1,2}+x_{2,1} & 0\end{array}\right]$ for all $X \in \mathcal{M}(\mathbb{B})$. Then we can easily check that T is a nonsingular linear operator such that
(1) T preserves zero-term ranks 1 and 2 , and
(2) T strongly preserves zero-term rank 2 .

But it follows from $J \nsubseteq T(J)$ that T does not preserve zero-term rank 0 . Hence T does not preserve zero-term rank.

4. Zero-Term Rank Preservers of Matrices over Antinegative Semirings

Throughout this section, S denotes any commutative and antinegative semiring. In this section we provide characterizations of linear operators $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$ that preserve zero-term rank.

The pattern, \bar{A}, of a matrix A in $\mathcal{M}(S)$ is the Boolean matrix in $\mathcal{M}(\mathbb{B})$ whose (i, j) th entry is 0 if and only if $a_{i, j}=0$. Notice that $\bar{A} \sqsubseteq \bar{B}$ if and only if $A \sqsubseteq B$ for all A and B in $\mathcal{M}(S)$. It follows that $z(A)=z(\bar{A})$ for all $A \in \mathcal{M}(S)$. Thus, the zero-term rank of $A \in \mathcal{M}(S)$ depends only on its pattern \bar{A}.

For a linear operator $T: \mathcal{N}(S) \rightarrow \mathcal{\mathcal { N }}(S)$, define $\bar{T}: \mathcal{N}(\mathbb{B}) \rightarrow \mathcal{\mathcal { M }}(\mathbb{B})$ by $\bar{T}\left(E_{i, j}\right)=$ $\overline{T\left(E_{i, j}\right)}$ for all cells $E_{i, j}$. Then \bar{T} is a linear operator on $\mathcal{M}(\mathbb{B})$.
Lemma 4.1. Let $0 \leq k \leq m$. Suppose that $T: \mathcal{N}(S) \rightarrow \mathcal{N}(S)$ is a linear operator. Then T preserves zero-term rank k on $\mathcal{N}(S)$ if and only if \bar{T} preserves zero-term rank k on $\mathcal{N}(\mathbb{B})$.
Proof. Since $z(A)=z(\bar{A})$ and $\bar{T}(\bar{A})=\overline{T(A)}$ for all $A \in \mathcal{M}(S)$, we have $z(T(A))=$ $z(\bar{T}(\bar{A}))$, and hence the result follows.

Theorem 4.2. Let $m \geq 3$. For a linear operator $T: \mathcal{M}(S) \rightarrow \mathcal{M}(S)$, the following are equivalent:
(i) T preserves zero-term rank;
(ii) T preserves zero-term ranks k and $k+1$, where $0 \leq k \leq m-1$;
(iii) T strongly preserves zero-term rank l, where $1 \leq l \leq m$;
(iv) T is a (P, Q, B)-operator.

Proof. The result follows from Lemma 4.1 and Theorems 1.1 and 3.7.
As a concluding remark, we suggest to prove the following conjecture:
Conjecture. Let $T: \mathcal{N}(S) \rightarrow \mathcal{N}(S)$ be a linear operator. Then T preserves zero-term rank if and only if T preserves any two zero-term ranks h and k with $1 \leq h<k \leq m \leq n$.

References

[1] L. B. Beasley and N. J. Pullman, Boolean rank preserving operators and Boolean rank-1 spaces, Linear Algebra Appl., 59(1984), 55-77.
[2] L. B. Beasley and N. J. Pullman, Semiring rank versus column rank, Linear Algebra Appl., 101(1988), 33-48.
[3] L. B. Beasley and N. J. Pullman, Linear operators that preserve term rank-1, Proc. Roy. Irish Acad., 91(1990), 71-78.
[4] L. B. Beasley, S. Z. Song and S. G. Lee, Linear operators that preserve zero-term rank of Boolean matrices, J. Korean Math. Soc., 36(6)(1999), 1181-1190.
[5] L. B. Beasley, S. Z. Song and S. G. Lee, Zero-term rank preservers, Linear and Multilinear Algebra, 48(2001), 313-318.
[6] K. T. Kang, S. Z. Song and L. B. Beasley, Linear preservers of term ranks of matrices over semirings, Linear Algebra Appl., 436(2012), 1850-1862.

[^0]: * Corresponding Author.

 Received October 20, 2013; accepted April 9, 2014.
 2010 Mathematics Subject Classification: 15A03, 15A04, 15A86.
 Key words and phrases: Semiring, zero-term rank, linear operator, (strongly) preserve. This work was supported under the framework of international cooperation program managed by National Research Foundation of Korea (NRF-2013K2A1A2053670).

