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ABSTRACT. Let M(S) denote the set of all mxn matrices over a semiring S. For A € M(S),
zero-term rank of A is the minimal number of lines (rows or columns) needed to cover all
zero entries in A. In [5], the authors obtained that a linear operator on M(S) preserves
zero-term rank if and only if it preserves zero-term ranks 0 and 1. In this paper, we obtain
new characterizations of linear operators on M(S) that preserve zero-term rank. Conse-
quently we obtain that a linear operator on M(S) preserves zero-term rank if and only if
it preserves two consecutive zero-term ranks k and k + 1, where 0 < k < min{m,n} — 1 if
and only if it strongly preserves zero-term rank h, where 1 < h < min{m,n}.

1. Introduction and Preliminaries

A semiring (]2]) is a set S equipped with two binary operations + and - such that
(S,+) is a commutative monoid with identity element 0 and (.5, ) is a monoid with
identity element 1. In addition, operations + and - are connected by distributivity
and 0 annihilates S. Thus all rings with identity are semirings.
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A semiring S is commutative if (S, -) is Abelian; S is antinegative if 0 is the only
element to have an additive inverse. Thus, no ring is antinegative semiring except
{0}. The following are some examples of semirings which occur in combinatorics.
Let B = {0,1}. Then (B, +,-) is a semiring (the binary Boolean semiring) if arith-
metic in B follows the usual rules except that 1 + 1 = 1. If F is the real interval
[0,1], then (F,+,-) = (F, max, min) is a semiring (the fuzzy semiring). If P is any
subring with identity, of R, the reals (under real addition and multiplication), and
P, denotes the nonnegative part of P, then P, is a semiring. In particular Z., the
nonnegative integers, is a semiring. These are all commutative and antinegative
semirings.

Hereafter, S will denote an arbitrary commutative and antinegative semiring.
Let M(S) be the set of all m x n matrices with entries in a semiring S. The matrix
Op,n is the m x n zero matrix and the matrix J,, ,, is the m x n matrix all of whose
entries are 1. We will suppress the subscripts on these matrices when the orders are
evident from the context and we write O and J, respectively. Algebraic operations
on M(S) are defined as if the underlying scalars were in a field.

The zero-term rank, z(A), of A € M(S) is the minimal number % of lines (rows
or columns) needed to cover all zero entries in A. That is, z(A) is the minimal
number k such that all zero entries of A are contained in r rows and k — r columns.
The term rank, t(A), of A is the minimal number £ of lines (rows or columns) needed
to cover all nonzero entries in A.

From now on we will assume that 2 < m < n unless specified otherwise. It
follows that 0 < z(A) < m for all A € M(S). Evidently we have that

2(0)=t(J)=m and z(J)=t(0)=0.

An operator T : M(S) — M(S) is called linear if T(aA+8B) = oT(A)+ ST (B)
for all A,B € M(S) and for all a,8 € S. Let T : M(S) — M(S) be a linear
operator. If f is a function defined on M(S), then T' preserves the function f if
f(T(A)) = f(A) for all A € M(S). There are many papers on linear operators that
preserve matrix functions over S(see [1]-[6] and therein). Beasley and Pullman([3])
characterized linear operators on M(.S) that preserve term rank. Recently Beasely,
Kang and Song([6]) extended their results and obtained new characterizations of
linear operators on M(S) that preserve term rank. But there are few papers on
zero-term rank preservers of matrices over S. Beasley, Song and Lee([5]) have
characterized linear operators on M(S) that preserve zero-term rank as following:

Theorem 1.1.([5]) For a linear operator T : M(S) — M(S), the following are
equivalent:

(i) T preserves zero-term rank;

(ii) T preserves zero-term rank 1 and J C T(J);

(iii) T is a (P, Q, B)-operator.

We note that the condition (ii) in Theorem 1.1 means that T preserves zero-term
ranks 0 and 1(see Lemma 2.2).
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In this paper, we generalize the conditions of Theorem 1.1 to any two consecutive
zero-term rank preservers. Furthermore we obtain other characterizations of the
zero-term rank preservers.

2. Preliminary

If A and B are matrices in M(S), we say that B dominates A (written A C B
or B A)ifb;; =0 implies a; ; = 0 for all ¢ and j. This provides a reflexive and
transitive relation on M(S).

Lemma 2.1. For matrices A and B in M(S), we have:

(i) 2(A+ B) < 2(A) + 2(B);
(ii) if A C B, then z(B) < z(A);
(iil) if T : M(S) — M(S) is a linear operator and A C B, then T(A) C T(B).

Proof. The results follow from the definitions of both zero-term rank and linear
operator. O

For a linear operator T : M(S) — M( nd 0 < k < m, we say that

S) a
(1) T preserves zero-term rank k if z(T'(X)) = k whenever z(X) = k for all X;
(2) T preserves zero-term rank if z(T'(X)) = z(X) for all X.

Lemma 2.2. Suppose that T': M(S) — M(S) is a linear operator. Then J C T'(J)
if and only if T preserves zero-term rank O.

Proof. Suppose that J T T(J) and A is any matrix in M(S) with z(4) = 0.
Clearly J C A and hence Lemma 2.1(iii) implies that J C T'(J) C T'(A). That is,
2(T(A)) = 0. Therefore T preserves zero-term rank 0. The converse is obvious. O

A matrix in M(S) is called a cell if it has exactly one 1 entry. We denote the
cell whose one 1 entry is in the (4, ) position by E; ;. Further we let &, , be the
set of all cells in M(S). That is, €, ={E;; |1 <i<m, 1<j<n}

Let B be the binary Boolean semiring and M(B) be the set of all m x n Boolean
matrices with entries in B.

Lemma 2.3. ([1]) If T : M(B) — M(B) is a linear operator, then T is invertible if
and only if 7' permute &, ;.

n
An m x n matrix L is called a line matrizif L = ) E;; for some ¢ € {1,...,m}
m n =t
or L =% E,; for some j € {1,...,n}: R; = > E,;; is the ith row matriz and
s=1 =1

Cj = > E,j is the jth column matriz.
s=1
For matrices A and B in M(S), the matrix A o B denotes the Hadamard or

Schur product. That is, the (¢, j)th entry of Ao B is a; jb; ;. A nonzero s € S is a
zero divisor if s’s = 0 for some nonzero s’ € S.
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If P and @) are permutation matrices of orders m and n, respectively, and B is
a matrix in M(S) none of whose entries is a zero divisor or zero, then an operator
T : M(S) — M(S) is called a (P, Q, B)-operator if T(X) = P(X o B)Q for all X, or
m =n and T(X) = P(X* o B)Q for all X, where X! denotes the transpose of X.
If B = J we say that T is a (P, Q)-operator.

The number of nonzero entries of a matrix A € M(S) is denoted by £(A).

For a linear operator T' on M(S), we say that T preserves all line matrices if
T(L) is a line matrix for all line matrix L.

Lemma 2.4. Assume that T : M(B) — M(B) is an invertible linear operator. Then
T preserves all line matrices if and only if T is a (P, Q)-operator.

Proof. By Lemma 2.3, T' permutes &, . Suppose that T" preserves all line matrices
and let R ={Ry,..., R} and € = {C},...,Cy}. Now we will claim that either

(1) T maps R onto R and maps € onto C, or
(2) T maps R onto € and maps € onto R.

If m # n, (1) is satisfied since T preserves all line matrices. Thus we assume that
m = n. Suppose that the claim is not true. Then there are two row matrices R;
and R; such that T(R;) € R and T(R;) € C. But then #(R; + R;) = 2n, while
$#(T'(R; + R;)) = 2n — 1, a contradiction to the fact that T is invertible. Hence the
claim is true.

If (1) holds, there are permutations « and 3 of {1,...,m} and {1,...,n}, re-
spectively, such that T'(R;) = Rq; for all i and T'(C}) = Cg(; for all j. Let P and
@ be the permutation matrices corresponding to a and [, respectively. Then we
have that

T(Ei;j) = Ea),p) = PEi;Q

for all cells E; ;. By the action of T on &, ,, we have that T'(X) = PXQ for
all X. Hence T is a (P,Q)-operator. If (2) holds, then m = n and a parallel
argument shows that there are permutation matrices P and @ of order n such that
T(X) = PX'Q for all X. Thus T is a (P, Q)-operator.

The converse is obvious. g

For Boolean matrices A and B in M(B) with B C A, we define A\ B to be the
0 ifb; #0

matrix C such that ¢; ; = { 0 - otherwise
1,7 M

Theorem 2.5. Suppose that T : M(B) — M(B) is an invertible linear operator and
1<k <m. ThenT preserves zero-term rank k if and only if T is a (P, Q)-operator.

Proof. By Lemma 2.3, T' permutes &, ,. Assume that T preserves zero-term rank
k, where 1 < k < m. Since T permutes &, ,, we have that T'(J) = J and hence
J C T(J). Thus by Theorem , T is a (P, Q)-operator for the case of k = 1. Now
let k > 2. Suppose that T does not preserve a line matrix. Then there are two
cells F and F' that are not dominated by the same line matrix such that T(E) and
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T(F) are dominated by the same line matrix. Without loss of generality, we may
assume that T(El,l + E272) = El,l + ELQ. Let A = El,l + E2’2 -+ . Ek,k so that
z(J\ A) = k. Since at least two cells in T(A) are dominated by the same line
matrix, we have that z(T(J \ A)) = 2(J\ T(A)) < k — 1. This is a contradiction
to the fact that T preserves zero-term rank k. Therefore T must preserve all line
matrices. Thus T is a (P, Q))-operator by Lemma 2.4.

The converse is obvious. |

3. Zero-Term Rank Preservers of Boolean Matrices

In this section, we give necessary and sufficient conditions for a linear operator
T:M(B) — M(B) to preserve zero-term rank.

An operator T : M(S) — M(S) is singular if T(X) = O for some nonzero
X € M(S); otherwise T is nonsingular. Evidently every (P, @, B)-operator on M(S)
is nonsingular. In particular, if T : M(B) — M(B) is a singular linear operator, then
we can easily check that T'(F) = O for some cell E.

Example 3.1. For 0 < k <m,let A= J\ (E11+ E22+ -+ Ei ). Define an
operator T : M(B) — M(B) by T(O) = O and T'(X) = A for all nonzero X € M(B).
Clearly, T is linear, nonsingular and preserves zero-term rank k since z(A4) = k. But
T does not preserve zero-term rank. O

The above Example implies that the condition on T that it preserves a zero-
term rank k& is not sufficient for T" to be a zero-term rank preserver. So we want to
find some conditions for T' to be a zero-term rank preserver.

For a linear operator T : M(S) — M(S) and 0 <! < m, we say that T strongly
preserves zero-term rank | if z(T(X)) =1 if and only if 2(X) = for all X.

Lemma 3.2. Let 0 <k <m —1and 0 <! < m. Assume that 7 : M(B) — M(B)
is a linear operator. If

(i) T preserves zero-term ranks k and k + 1, or
(ii) T strongly preserves zero-term rank I,

then 7' is nonsingular.

Proof. If T is singular, then T'(E) = O for some cell E. Without loss of generality,
we assume that T'(E1 1) = O so that T'(J) =T(J \ E1,1). Notice that z(J) = 0 and
z(J\ E1,1) = 1. Hence we have a contradiction for the case of k =0 and [ € {0,1}.

k41
Thus we assume that £k > 1 and [ > 2. Let A = Z E;;. Then z(J\A) =k+1
and z(J\ A+ El’l) =k But T(J\A)=T(J\A —|— E1 1) contradicts the condition
(i). Let B = Z E;;. Then z2(J\ B) =1l and 2(J\ B+ E11) =1—1. But

T(J\ B) = J \ B + Ej 1) contradicts the condition (ii).
Hence T is nonsingular. ]
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For 0 < k < m, we let Dy = [d; ;] be a Boolean matrix in M(B) such that
d;; = 0if and only if ¢ + j < k+ 1. Then we have that z(D) = k. Notice that
if 1 <k < m —1 then we have that z(Dyy1) = k + 1, while 2(Dyy1 + E2x) = k
since all zero entries of Dy, 1 + 5 ), are contained in the first row and the first £ —1
columns. Similarly z(Dyy1 + Ek2) = k. For example, consider the 5 x 6 matrix

Dy

Il
_o0 o oo
— -0 O O
==
—= == O
e
— = = =

Then Z(D4) =4 and Z(]D)4 + E273) = Z(ID)4 + E372) =3.

Lemma 3.3. Let m > 3 and 1 <k <m—1. If T : M(B) — M(B) is a linear
operator that preserves zero-term ranks k and k+1, then §(T(E; ;)) = 1 for all cells
Ei,j~

Proof. By Lemma 3.2(i), T is nonsingular and hence §(T'(E;;)) > 1 for all cells
E; ;. Suppose that $(T(E)) > 2 for some cell E. By permuting we may assume
that T(F) J E+ F for some cell F # E.

If E and F are in the same row, we may assume by permuting that £ = Ej ;41
and F' = Ey ;. If E and F are in the same column, we may assume by permuting
that &/ = Ej412 and F = Epo. If E and F' are in different rows and different
columns, we may assume by permuting that & = F3 ;41 and F' = Fy ;. Then we
have that F C Dgy; and F £ Diyq. It follows that z(Dgy1 + E) = k£ + 1 and
2Dy + F) = k.

Let L = T? where d is chosen so that L : M(B) — M(B) is an idempotent
operator (L? = L). Then we can easily check that L preserves zero-term ranks k
and k+ 1, and L(E) J E+ F. Since L(F) = F + X for some matrix X € M(B),
we have that

LEY+ F=(F+X)+F=F+X =L(F).

Since L is idempotent, we have that L(E) = L?(E) = L(L(E)) = L(L(E) + F) =
L?*(E) + L(F) = L(E) + L(F) = L(E + F). It follows that L(Dyy; + E) =
L(Dgy1 + E + F), equivalently, L(Dy11) = L(Dgy1 + F) since F C Dgyq. This
is a contradiction to the fact that L preserves zero-term ranks k and k + 1 since
Z(Dgy1) = k+ 1 and 2(Dg41 + F) = k. Hence we have that §(T(E; ;)) = 1 for all
cells E’L] O

Theorem 3.4. Let m > 3 and 0 < k < m — 1. Suppose that T : M(B) — M(B)
is a linear operator. Then T preserves zero-term rank if and only if T preserves
zero-term ranks k and k + 1.

Proof. By Theorem 1.1 and Lemma 2.2, the result is obvious for the case of k = 0.
Now consider the case k > 1. Assume that T preserves zero-term ranks k and k -+ 1.
Then §(T(E;,;)) = 1 for all cells F; ; by Lemma 3.3. Now, suppose that T is not
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invertible. Then T'(E) = T(F') for some distinct cells E and F' by Lemma 2.3. If
E and F are in the same row, we may assume by permuting that £ = Ej ;11 and
F =FE,). If E and F are in the same column, we may assume by permuting that
E =FEii12and F' = Ej 5. If E and F are in different rows and different columns,
we may assume by permuting that £ = F3 ;11 and F' = Fs . Then we have that
E C Dgy1 and F £ Dgyq. It follows that 2(Dg41 +F) = k+1 and 2(Dg1+ F) = k.
But then T'(Dg41 + E) = T (Dgy1 + F), a contradiction to the fact that T' preserves
zero-term ranks k and k + 1. Hence T' must be invertible. By Theorem 2.5, T is a
(P, @)-operator and hence T preserves zero-term rank by Theorem 1.1.
The converse is obvious. |

Lemma 3.5. If T : M(B) — M(B) is a linear operator that strongly preserves
zero-term rank 1, then T preserves zero-term rank.

Proof. Suppose that J Z T'(J). Since T strongly preserves zero-term rank 1, we
have that z(T'(J)) > 2. Let F; ; be an arbitrary cell. Then T'(J \ E; ;) C T'(J) and
hence by Lemma 2.1(ii), we have that z(T(J\ E; ;)) > z(T(J)) > 2, a contradiction

since z(J \ E; ;) = 1. Thus we have that J C T'(J). By Theorem , T preserves
zero-term rank. a

Theorem 3.6. Let m > 3 and 1 <1 < m. Suppose that T : M(B) — M(B) is a
linear operator. Then T preserves zero-term rank if and only if T' strongly preserves
zero-term rank [.

Proof. For 1 <[ < m, assume that T strongly preserves zero-term rank [. If [ =1,
then T preserves zero-term rank by Lemma 3.5. So we assume that [ > 2. Then T'
is nonsingular by Lemma 3.2(ii) and hence §(T'(E; ;)) > 1 for all cells E; ;.

First, suppose that #(T(E)) > 2 for some cell E. By permuting we may assume
that T(E) J E + F for some cell F # E. If E and F are in the same row, we may
assume by permuting that £ = Fy; and F' = E;_;. If E and F' are in the same
column, we may assume by permuting that &/ = E;» and F' = Ej_ 5. If E and
F are in different rows and different columns, we may assume by permuting that
E =FE3;and F = Ey;_;. Then we have that £ T ID; and F Z ;. It follows that
zDy+ E)=1land z(D;+ F) =1-1.

Let L = T? where d is chosen so that L : M(B) — M(B) is an idempotent
operator. Then we can easily check that L strongly preserves zero-term ranks [ and
L(E) 3 E + F. By the similar argument in the proof of Lemma 3.3, we have that
L(D;) = L(D; + F), a contradiction to the fact that 7" strongly preserves zero-term
rank [. Hence we have established that §(T'(E; ;)) = 1 for all cells E; ;.

Next, suppose that 7' is not invertible. Then T'(E) = T(F) for some distinct
cells £ and F' by Lemma 2.3. By the similar argument in the proof of Theorem ,
we have that T(D; + E) = T(D; + F) with 2(D; + E) =l and 2(D; + F) =1 -1,
a contradiction to the fact that T strongly preserves zero-term rank [. Thus T
must be invertible. By Theorem 2.5, T is a (P, @)-operator and hence T' preserves
zero-term rank by Theorem 1.1.

The converse is obvious. |
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If we combine three Theorems 1.1, 3.4 and 3.6, we obtain that:

Theorem 3.7. Let m > 3. For a linear operator T : M(B) — M(B), the following
are equivalent:

(i) T preserves zero-term rank;

(ii) T preserves zero-term ranks k and k + 1, where 0 < k < m — 1;
(iii) T strongly preserves zero-term rank I, where 1 <1 < m;
(iv) T is a (P, Q)-operator.

We remarks that the condition m > 3 is essential in the Theorem 3.7. For
m = 2, the conditions (ii) or (iii) in the Theorem 3.7 may not imply the condition
(i). Consider the cases of k =m — 1 =1 and [ = m = 2, respectively. Let M(B) be
the set of all 2 x 2 Boolean matrices. Define T : M(B) — M(B) by

T(EM):T(EQ,Q):B 8} and T(El,g):T(EgJ):[(l) (ﬂ

. T11 T12 T11+T22 Zi2+ T2
equivalently, T ’ ’ = ’ ’ ’ | for all X € M(B).
Ay Y ([$2,1 $2,2]> {961,2 + 221 0 } (B)

Then we can easily check that T is a nonsingular linear operator such that
(1) T preserves zero-term ranks 1 and 2, and
(2) T strongly preserves zero-term rank 2.

But it follows from J Z T'(J) that T does not preserve zero-term rank 0. Hence T
does not preserve zero-term rank.

4. Zero-Term Rank Preservers of Matrices over Antinegative Semirings

Throughout this section, S denotes any commutative and antinegative semiring.
In this section we provide characterizations of linear operators T : M(S) — M(S)
that preserve zero-term rank.

The pattern, A, of a matrix A in M(S) is the Boolean matrix in M(B) whose
(i,7)th entry is 0 if and only if a; ; = 0. Notice that A C B if and only if A C B
for all A and B in M(S). It follows that z(A) = z(A) for all A € M(S). Thus, the
zero-term rank of A € M(S) depends only on its pattern A.

For a linear operator 7' : M(S) — M(S), define T : M(B) — M(B) by T(E; ;) =
T(E; ;) for all cells E; ;. Then T is a linear operator on M(B).

Lemma 4.1. Let 0 < k < m. Suppose that 7" : M(S) — M(S) is a linear operator.
Then T preserves zero-term rank k on M(S) if and only if T' preserves zero-term
rank k& on M(B).

Proof. Since z(A) = z(A) and T(A) = T(A) for all A € M(S), we have z(T'(A))

2(T(A)), and hence the result follows. O
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Theorem 4.2. Let m > 3. For a linear operator T : M(S) — M(S), the following
are equivalent:

(i) T preserves zero-term rank;

(i)

(iii) T strongly preserves zero-term rank I, where 1 <1 < m;
)

(iv) T is a (P,Q, B)-operator.

T preserves zero-term ranks k and k + 1, where 0 < k <m — 1;

Proof. The result follows from Lemma 4.1 and Theorems 1.1 and 3.7. a
As a concluding remark, we suggest to prove the following conjecture:

Conjecture. Let T : M(S) — M(S) be a linear operator. Then T preserves
zero-term rank if and only if T preserves any two zero-term ranks h and k with
1<h<k<m<n.
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