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Abstract. LetM(S) denote the set of allm×nmatrices over a semiring S. For A ∈ M(S),

zero-term rank of A is the minimal number of lines (rows or columns) needed to cover all

zero entries in A. In [5], the authors obtained that a linear operator on M(S) preserves

zero-term rank if and only if it preserves zero-term ranks 0 and 1. In this paper, we obtain

new characterizations of linear operators on M(S) that preserve zero-term rank. Conse-

quently we obtain that a linear operator on M(S) preserves zero-term rank if and only if

it preserves two consecutive zero-term ranks k and k + 1, where 0 ≤ k ≤ min{m,n} − 1 if

and only if it strongly preserves zero-term rank h, where 1 ≤ h ≤ min{m,n}.

1. Introduction and Preliminaries

A semiring ([2]) is a set S equipped with two binary operations + and · such that
(S,+) is a commutative monoid with identity element 0 and (S, ·) is a monoid with
identity element 1. In addition, operations + and · are connected by distributivity
and 0 annihilates S. Thus all rings with identity are semirings.
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A semiring S is commutative if (S, ·) is Abelian; S is antinegative if 0 is the only
element to have an additive inverse. Thus, no ring is antinegative semiring except
{0}. The following are some examples of semirings which occur in combinatorics.
Let B = {0, 1}. Then (B,+, ·) is a semiring (the binary Boolean semiring) if arith-
metic in B follows the usual rules except that 1 + 1 = 1. If F is the real interval
[0, 1], then (F,+, ·) = (F,max,min) is a semiring (the fuzzy semiring). If P is any
subring with identity, of R, the reals (under real addition and multiplication), and
P+ denotes the nonnegative part of P, then P+ is a semiring. In particular Z+, the
nonnegative integers, is a semiring. These are all commutative and antinegative
semirings.

Hereafter, S will denote an arbitrary commutative and antinegative semiring.
Let M(S) be the set of all m×n matrices with entries in a semiring S. The matrix
Om,n is the m×n zero matrix and the matrix Jm,n is the m×n matrix all of whose
entries are 1. We will suppress the subscripts on these matrices when the orders are
evident from the context and we write O and J , respectively. Algebraic operations
on M(S) are defined as if the underlying scalars were in a field.

The zero-term rank, z(A), of A ∈ M(S) is the minimal number k of lines (rows
or columns) needed to cover all zero entries in A. That is, z(A) is the minimal
number k such that all zero entries of A are contained in r rows and k− r columns.
The term rank, t(A), of A is the minimal number k of lines (rows or columns) needed
to cover all nonzero entries in A.

From now on we will assume that 2 ≤ m ≤ n unless specified otherwise. It
follows that 0 ≤ z(A) ≤ m for all A ∈ M(S). Evidently we have that

z(O) = t(J) = m and z(J) = t(O) = 0.

An operator T : M(S) → M(S) is called linear if T (αA+βB) = αT (A)+βT (B)
for all A,B ∈ M(S) and for all α, β ∈ S. Let T : M(S) → M(S) be a linear
operator. If f is a function defined on M(S), then T preserves the function f if
f(T (A)) = f(A) for all A ∈ M(S). There are many papers on linear operators that
preserve matrix functions over S(see [1]-[6] and therein). Beasley and Pullman([3])
characterized linear operators on M(S) that preserve term rank. Recently Beasely,
Kang and Song([6]) extended their results and obtained new characterizations of
linear operators on M(S) that preserve term rank. But there are few papers on
zero-term rank preservers of matrices over S. Beasley, Song and Lee([5]) have
characterized linear operators on M(S) that preserve zero-term rank as following:

Theorem 1.1.([5]) For a linear operator T : M(S) → M(S), the following are
equivalent:

(i) T preserves zero-term rank;

(ii) T preserves zero-term rank 1 and J ⊑ T (J);

(iii) T is a (P,Q,B)-operator.

We note that the condition (ii) in Theorem 1.1 means that T preserves zero-term
ranks 0 and 1(see Lemma 2.2).
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In this paper, we generalize the conditions of Theorem 1.1 to any two consecutive
zero-term rank preservers. Furthermore we obtain other characterizations of the
zero-term rank preservers.

2. Preliminary

If A and B are matrices in M(S), we say that B dominates A (written A ⊑ B
or B ⊒ A) if bi,j = 0 implies ai,j = 0 for all i and j. This provides a reflexive and
transitive relation on M(S).

Lemma 2.1. For matrices A and B in M(S), we have:

(i) z(A+B) ≤ z(A) + z(B);

(ii) if A ⊑ B, then z(B) ≤ z(A);

(iii) if T : M(S) → M(S) is a linear operator and A ⊑ B, then T (A) ⊑ T (B).

Proof. The results follow from the definitions of both zero-term rank and linear
operator. 2

For a linear operator T : M(S) → M(S) and 0 ≤ k ≤ m, we say that

(1) T preserves zero-term rank k if z(T (X)) = k whenever z(X) = k for all X;

(2) T preserves zero-term rank if z(T (X)) = z(X) for all X.

Lemma 2.2. Suppose that T : M(S) → M(S) is a linear operator. Then J ⊑ T (J)
if and only if T preserves zero-term rank 0.

Proof. Suppose that J ⊑ T (J) and A is any matrix in M(S) with z(A) = 0.
Clearly J ⊑ A and hence Lemma 2.1(iii) implies that J ⊑ T (J) ⊑ T (A). That is,
z(T (A)) = 0. Therefore T preserves zero-term rank 0. The converse is obvious. 2

A matrix in M(S) is called a cell if it has exactly one 1 entry. We denote the
cell whose one 1 entry is in the (i, j)th position by Ei,j . Further we let Em,n be the
set of all cells in M(S). That is, Em,n = {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

Let B be the binary Boolean semiring and M(B) be the set of all m×n Boolean
matrices with entries in B.
Lemma 2.3. ([1]) If T : M(B) → M(B) is a linear operator, then T is invertible if
and only if T permute Em,n.

An m×n matrix L is called a line matrix if L =
n∑

l=1

Ei,l for some i ∈ {1, . . . ,m}

or L =
m∑
s=1

Es,j for some j ∈ {1, . . . , n}: Ri =
n∑

l=1

Ei,l is the ith row matrix and

Cj =
m∑
s=1

Es,j is the jth column matrix.

For matrices A and B in M(S), the matrix A ◦ B denotes the Hadamard or
Schur product. That is, the (i, j)th entry of A ◦ B is ai,jbi,j . A nonzero s ∈ S is a
zero divisor if s′s = 0 for some nonzero s′ ∈ S.
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If P and Q are permutation matrices of orders m and n, respectively, and B is
a matrix in M(S) none of whose entries is a zero divisor or zero, then an operator
T : M(S) → M(S) is called a (P,Q,B)-operator if T (X) = P (X ◦B)Q for all X, or
m = n and T (X) = P (Xt ◦ B)Q for all X, where Xt denotes the transpose of X.
If B = J we say that T is a (P,Q)-operator.

The number of nonzero entries of a matrix A ∈ M(S) is denoted by ♯(A).
For a linear operator T on M(S), we say that T preserves all line matrices if

T (L) is a line matrix for all line matrix L.

Lemma 2.4. Assume that T : M(B) → M(B) is an invertible linear operator. Then
T preserves all line matrices if and only if T is a (P,Q)-operator.

Proof. By Lemma 2.3, T permutes Em,n. Suppose that T preserves all line matrices
and let R = {R1, . . . , Rm} and C = {C1, . . . , Cn}. Now we will claim that either

(1) T maps R onto R and maps C onto C, or

(2) T maps R onto C and maps C onto R.

If m ̸= n, (1) is satisfied since T preserves all line matrices. Thus we assume that
m = n. Suppose that the claim is not true. Then there are two row matrices Ri

and Rj such that T (Ri) ∈ R and T (Rj) ∈ C. But then ♯(Ri + Rj) = 2n, while
♯(T (Ri +Rj)) = 2n− 1, a contradiction to the fact that T is invertible. Hence the
claim is true.

If (1) holds, there are permutations α and β of {1, . . . ,m} and {1, . . . , n}, re-
spectively, such that T (Ri) = Rα(i) for all i and T (Cj) = Cβ(j) for all j. Let P and
Q be the permutation matrices corresponding to α and β, respectively. Then we
have that

T (Ei,j) = Eα(i),β(j) = PEi,jQ

for all cells Ei,j . By the action of T on Em,n, we have that T (X) = PXQ for
all X. Hence T is a (P,Q)-operator. If (2) holds, then m = n and a parallel
argument shows that there are permutation matrices P and Q of order n such that
T (X) = PXtQ for all X. Thus T is a (P,Q)-operator.

The converse is obvious. 2

For Boolean matrices A and B in M(B) with B ⊑ A, we define A \B to be the

matrix C such that ci,j =

{
0 if bi,j ̸= 0

ai,j otherwise.

Theorem 2.5. Suppose that T : M(B) → M(B) is an invertible linear operator and
1 ≤ k ≤ m. Then T preserves zero-term rank k if and only if T is a (P,Q)-operator.

Proof. By Lemma 2.3, T permutes Em,n. Assume that T preserves zero-term rank
k, where 1 ≤ k ≤ m. Since T permutes Em,n, we have that T (J) = J and hence
J ⊑ T (J). Thus by Theorem , T is a (P,Q)-operator for the case of k = 1. Now
let k ≥ 2. Suppose that T does not preserve a line matrix. Then there are two
cells E and F that are not dominated by the same line matrix such that T (E) and
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T (F ) are dominated by the same line matrix. Without loss of generality, we may
assume that T (E1,1 + E2,2) = E1,1 + E1,2. Let A = E1,1 + E2,2 + · · ·Ek,k so that
z(J \ A) = k. Since at least two cells in T (A) are dominated by the same line
matrix, we have that z(T (J \ A)) = z(J \ T (A)) ≤ k − 1. This is a contradiction
to the fact that T preserves zero-term rank k. Therefore T must preserve all line
matrices. Thus T is a (P,Q)-operator by Lemma 2.4.

The converse is obvious. 2

3. Zero-Term Rank Preservers of Boolean Matrices

In this section, we give necessary and sufficient conditions for a linear operator
T : M(B) → M(B) to preserve zero-term rank.

An operator T : M(S) → M(S) is singular if T (X) = O for some nonzero
X ∈ M(S); otherwise T is nonsingular. Evidently every (P,Q,B)-operator onM(S)
is nonsingular. In particular, if T : M(B) → M(B) is a singular linear operator, then
we can easily check that T (E) = O for some cell E.

Example 3.1. For 0 ≤ k ≤ m, let A = J \ (E1,1 + E2,2 + · · · + Ek,k). Define an
operator T : M(B) → M(B) by T (O) = O and T (X) = A for all nonzero X ∈ M(B).
Clearly, T is linear, nonsingular and preserves zero-term rank k since z(A) = k. But
T does not preserve zero-term rank. 2

The above Example implies that the condition on T that it preserves a zero-
term rank k is not sufficient for T to be a zero-term rank preserver. So we want to
find some conditions for T to be a zero-term rank preserver.

For a linear operator T : M(S) → M(S) and 0 ≤ l ≤ m, we say that T strongly
preserves zero-term rank l if z(T (X)) = l if and only if z(X) = l for all X.

Lemma 3.2. Let 0 ≤ k ≤ m− 1 and 0 ≤ l ≤ m. Assume that T : M(B) → M(B)
is a linear operator. If

(i) T preserves zero-term ranks k and k + 1, or

(ii) T strongly preserves zero-term rank l,

then T is nonsingular.

Proof. If T is singular, then T (E) = O for some cell E. Without loss of generality,
we assume that T (E1,1) = O so that T (J) = T (J \E1,1). Notice that z(J) = 0 and
z(J \E1,1) = 1. Hence we have a contradiction for the case of k = 0 and l ∈ {0, 1}.

Thus we assume that k ≥ 1 and l ≥ 2. Let A =
k+1∑
i=1

Ei,i. Then z(J \ A) = k + 1

and z(J \A+E1,1) = k. But T (J \A) = T (J \A+E1,1) contradicts the condition

(i). Let B =
l∑

i=1

Ei,i. Then z(J \ B) = l and z(J \ B + E1,1) = l − 1. But

T (J \B) = T (J \B + E1,1) contradicts the condition (ii).
Hence T is nonsingular. 2
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For 0 ≤ k ≤ m, we let Dk = [di,j ] be a Boolean matrix in M(B) such that
di,j = 0 if and only if i + j ≤ k + 1. Then we have that z(Dk) = k. Notice that
if 1 ≤ k ≤ m − 1 then we have that z(Dk+1) = k + 1, while z(Dk+1 + E2,k) = k
since all zero entries of Dk+1+E2,k are contained in the first row and the first k−1
columns. Similarly z(Dk+1 + Ek,2) = k. For example, consider the 5× 6 matrix

D4 =


0 0 0 0 1 1
0 0 0 1 1 1
0 0 1 1 1 1
0 1 1 1 1 1
1 1 1 1 1 1

 .
Then z(D4) = 4 and z(D4 + E2,3) = z(D4 + E3,2) = 3.

Lemma 3.3. Let m ≥ 3 and 1 ≤ k ≤ m − 1. If T : M(B) → M(B) is a linear
operator that preserves zero-term ranks k and k+1, then ♯(T (Ei,j)) = 1 for all cells
Ei,j .

Proof. By Lemma 3.2(i), T is nonsingular and hence ♯(T (Ei,j)) ≥ 1 for all cells
Ei,j . Suppose that ♯(T (E)) ≥ 2 for some cell E. By permuting we may assume
that T (E) ⊒ E + F for some cell F ̸= E.

If E and F are in the same row, we may assume by permuting that E = E2,k+1

and F = E2,k. If E and F are in the same column, we may assume by permuting
that E = Ek+1,2 and F = Ek,2. If E and F are in different rows and different
columns, we may assume by permuting that E = E3,k+1 and F = E2,k. Then we
have that E ⊑ Dk+1 and F ̸⊑ Dk+1. It follows that z(Dk+1 + E) = k + 1 and
z(Dk+1 + F ) = k.

Let L = T d where d is chosen so that L : M(B) → M(B) is an idempotent
operator (L2 = L). Then we can easily check that L preserves zero-term ranks k
and k + 1, and L(E) ⊒ E + F . Since L(E) = F +X for some matrix X ∈ M(B),
we have that

L(E) + F = (F +X) + F = F +X = L(E).

Since L is idempotent, we have that L(E) = L2(E) = L(L(E)) = L(L(E) + F ) =
L2(E) + L(F ) = L(E) + L(F ) = L(E + F ). It follows that L(Dk+1 + E) =
L(Dk+1 + E + F ), equivalently, L(Dk+1) = L(Dk+1 + F ) since E ⊑ Dk+1. This
is a contradiction to the fact that L preserves zero-term ranks k and k + 1 since
z(Dk+1) = k + 1 and z(Dk+1 + F ) = k. Hence we have that ♯(T (Ei,j)) = 1 for all
cells Ei,j . 2

Theorem 3.4. Let m ≥ 3 and 0 ≤ k ≤ m − 1. Suppose that T : M(B) → M(B)
is a linear operator. Then T preserves zero-term rank if and only if T preserves
zero-term ranks k and k + 1.

Proof. By Theorem 1.1 and Lemma 2.2, the result is obvious for the case of k = 0.
Now consider the case k ≥ 1. Assume that T preserves zero-term ranks k and k+1.
Then ♯(T (Ei,j)) = 1 for all cells Ei,j by Lemma 3.3. Now, suppose that T is not
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invertible. Then T (E) = T (F ) for some distinct cells E and F by Lemma 2.3. If
E and F are in the same row, we may assume by permuting that E = E2,k+1 and
F = E2,k. If E and F are in the same column, we may assume by permuting that
E = Ek+1,2 and F = Ek,2. If E and F are in different rows and different columns,
we may assume by permuting that E = E3,k+1 and F = E2,k. Then we have that
E ⊑ Dk+1 and F ̸⊑ Dk+1. It follows that z(Dk+1+E) = k+1 and z(Dk+1+F ) = k.
But then T (Dk+1+E) = T (Dk+1+F ), a contradiction to the fact that T preserves
zero-term ranks k and k + 1. Hence T must be invertible. By Theorem 2.5, T is a
(P,Q)-operator and hence T preserves zero-term rank by Theorem 1.1.

The converse is obvious. 2

Lemma 3.5. If T : M(B) → M(B) is a linear operator that strongly preserves
zero-term rank 1, then T preserves zero-term rank.

Proof. Suppose that J ̸⊑ T (J). Since T strongly preserves zero-term rank 1, we
have that z(T (J)) ≥ 2. Let Ei,j be an arbitrary cell. Then T (J \Ei,j) ⊑ T (J) and
hence by Lemma 2.1(ii), we have that z(T (J \Ei,j)) ≥ z(T (J)) ≥ 2, a contradiction
since z(J \ Ei,j) = 1. Thus we have that J ⊑ T (J). By Theorem , T preserves
zero-term rank. 2

Theorem 3.6. Let m ≥ 3 and 1 ≤ l ≤ m. Suppose that T : M(B) → M(B) is a
linear operator. Then T preserves zero-term rank if and only if T strongly preserves
zero-term rank l.

Proof. For 1 ≤ l ≤ m, assume that T strongly preserves zero-term rank l. If l = 1,
then T preserves zero-term rank by Lemma 3.5. So we assume that l ≥ 2. Then T
is nonsingular by Lemma 3.2(ii) and hence ♯(T (Ei,j)) ≥ 1 for all cells Ei,j .

First, suppose that ♯(T (E)) ≥ 2 for some cell E. By permuting we may assume
that T (E) ⊒ E + F for some cell F ̸= E. If E and F are in the same row, we may
assume by permuting that E = E2,l and F = E2,l−1. If E and F are in the same
column, we may assume by permuting that E = El,2 and F = El−1,2. If E and
F are in different rows and different columns, we may assume by permuting that
E = E3,l and F = E2,l−1. Then we have that E ⊑ Dl and F ̸⊑ Dl. It follows that
z(Dl + E) = l and z(Dl + F ) = l − 1.

Let L = T d where d is chosen so that L : M(B) → M(B) is an idempotent
operator. Then we can easily check that L strongly preserves zero-term ranks l and
L(E) ⊒ E + F . By the similar argument in the proof of Lemma 3.3, we have that
L(Dl) = L(Dl + F ), a contradiction to the fact that T strongly preserves zero-term
rank l. Hence we have established that ♯(T (Ei,j)) = 1 for all cells Ei,j .

Next, suppose that T is not invertible. Then T (E) = T (F ) for some distinct
cells E and F by Lemma 2.3. By the similar argument in the proof of Theorem ,
we have that T (Dl + E) = T (Dl + F ) with z(Dl + E) = l and z(Dl + F ) = l − 1,
a contradiction to the fact that T strongly preserves zero-term rank l. Thus T
must be invertible. By Theorem 2.5, T is a (P,Q)-operator and hence T preserves
zero-term rank by Theorem 1.1.

The converse is obvious. 2
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If we combine three Theorems 1.1, 3.4 and 3.6, we obtain that:

Theorem 3.7. Let m ≥ 3. For a linear operator T : M(B) → M(B), the following
are equivalent:

(i) T preserves zero-term rank;

(ii) T preserves zero-term ranks k and k + 1, where 0 ≤ k ≤ m− 1;

(iii) T strongly preserves zero-term rank l, where 1 ≤ l ≤ m;

(iv) T is a (P,Q)-operator.

We remarks that the condition m ≥ 3 is essential in the Theorem 3.7. For
m = 2, the conditions (ii) or (iii) in the Theorem 3.7 may not imply the condition
(i). Consider the cases of k = m− 1 = 1 and l = m = 2, respectively. Let M(B) be
the set of all 2× 2 Boolean matrices. Define T : M(B) → M(B) by

T (E1,1) = T (E2,2) =

[
1 0
0 0

]
and T (E1,2) = T (E2,1) =

[
0 1
1 0

]
,

equivalently, T

([
x1,1 x1,2
x2,1 x2,2

])
=

[
x1,1 + x2,2 x1,2 + x2,1
x1,2 + x2,1 0

]
for all X ∈ M(B).

Then we can easily check that T is a nonsingular linear operator such that

(1) T preserves zero-term ranks 1 and 2, and

(2) T strongly preserves zero-term rank 2.

But it follows from J ̸⊑ T (J) that T does not preserve zero-term rank 0. Hence T
does not preserve zero-term rank.

4. Zero-Term Rank Preservers of Matrices over Antinegative Semirings

Throughout this section, S denotes any commutative and antinegative semiring.
In this section we provide characterizations of linear operators T : M(S) → M(S)
that preserve zero-term rank.

The pattern, A, of a matrix A in M(S) is the Boolean matrix in M(B) whose
(i, j)th entry is 0 if and only if ai,j = 0. Notice that A ⊑ B if and only if A ⊑ B
for all A and B in M(S). It follows that z(A) = z(A) for all A ∈ M(S). Thus, the
zero-term rank of A ∈ M(S) depends only on its pattern A.

For a linear operator T : M(S) → M(S), define T : M(B) → M(B) by T (Ei,j) =

T (Ei,j) for all cells Ei,j . Then T is a linear operator on M(B).

Lemma 4.1. Let 0 ≤ k ≤ m. Suppose that T : M(S) → M(S) is a linear operator.
Then T preserves zero-term rank k on M(S) if and only if T preserves zero-term
rank k on M(B).
Proof. Since z(A) = z(A) and T (A) = T (A) for all A ∈ M(S), we have z(T (A)) =
z(T (A)), and hence the result follows. 2
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Theorem 4.2. Let m ≥ 3. For a linear operator T : M(S) → M(S), the following
are equivalent:

(i) T preserves zero-term rank;

(ii) T preserves zero-term ranks k and k + 1, where 0 ≤ k ≤ m− 1;

(iii) T strongly preserves zero-term rank l, where 1 ≤ l ≤ m;

(iv) T is a (P,Q,B)-operator.

Proof. The result follows from Lemma 4.1 and Theorems 1.1 and 3.7. 2

As a concluding remark, we suggest to prove the following conjecture:

Conjecture. Let T : M(S) → M(S) be a linear operator. Then T preserves
zero-term rank if and only if T preserves any two zero-term ranks h and k with
1 ≤ h < k ≤ m ≤ n.
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