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A NEW GENERALIZED RESOLVENT AND APPLICATION

IN BANACH MAPPINGS

Xian Wang, Jun-min Chen, and Zhen He

Abstract. In this paper, we introduce a new generalized resolvent in a

Banach space and discuss its some properties. Using these properties, we

obtain an iterative scheme for finding a point which is a fixed point of
relatively weak nonexpansive mapping and a zero of monotone mapping.

Furthermore, strong convergence of the scheme to a point which is a fixed
point of relatively weak nonexpansive mapping and a zero of monotone

mapping is proved.

1. Introduction

Let E be a real Banach space with dual E∗. We denote by J the normalized
duality mapping from E into 2E

∗
. defined by

Jx := {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2‖},

where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E∗

is strictly convex then J is single-valued and if E is uniformly smooth then J
is uniformly continuous on bounded subsets of E. Moreover, if E is a reflexive
and strictly convex Banach space with a strictly convex dual, then J−1 is single
valued, one-to-one, surjective, and it is the duality mapping from E∗ into E
and thus JJ−1 = IE∗ = I∗ and J−1J = IE = I (see [3]). We note that in a
Hilbert space H, J is the identity mapping. Let E be a smooth, reflexive, and
strictly convex Banach space. We define the function V2 : E × E → R by

V2(y, x) = ‖x‖2 − 2〈Jy, x〉+ ‖y‖2, (1.1)

for ∀x ∈ E, y ∈ E. Let C be a nonempty closed convex subset of E. For an
arbitrary point x of E, consider the set {z ∈ C : V2(z, x) = miny∈C V2(y, x)}.
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It is known that this set is always a singleton(see [7])Let ΠC be a mapping of
E onto C satisfying

V2(ΠCx, x) = min
y∈C

V2(y, x). (1.2)

Such a mapping ΠC is called the generalized projection.
Applying the definitions of V2 and J , a functional V : E∗×E → R is defined

by the formula:

V (x∗, y) = V2(J−1x∗, y), ∀x∗ ∈ E∗, y ∈ E.
In the following, we shall make use of the following lemmas.

Lemma 1.1. ([1]) Let E be a real smooth Banach space, A : E → 2E
∗

be a
maximal monotone mapping, then A−10 is a closed and convex subset of E and
the graph of A, G(A), is demiclosed in the following sense: ∀xn ∈ D(A) with
xn → x in E, and ∀yn ∈ Axn with yn → y in E imply that x ∈ D(A) and
y ∈ Ax.

Lemma 1.2. ([7]) Let C be a nonempty closed and convex subset of a real
reflexive, strictly convex, and smooth Banach space E and let x ∈ E. Then
y ∈ C,

V2(y,ΠCx) + V2(ΠCx, x) ≤ V2(y, x).

Lemma 1.3. ([7]) Let C be a convex subset of a real smooth Banach space E.
Let x ∈ E and x0 ∈ C. Then V2(x0, x) = inf{V2(z, x) : z ∈ C} if and only if

〈z − x0, Jx0 − Jx〉 ≥ 0.

Lemma 1.4. ([4]) Let E be a real smooth and uniformly convex Banach space
and let {xn} and {yn} be two sequences of E. If either {xn} or {yn} is bounded
and V2(xn, yn)→ 0 as n→∞, then xn − yn → 0, as n→∞.

Let E∗ be a smooth Banach space and let D∗ be a nonempty closed convex
subset of E∗. A mapping R∗ : D∗ → D∗ is called generalized nonexpansive if
F (R∗) 6= Ø and

V (R∗x∗, J−1y∗) ≤ V (x∗, J−1y∗), ∀x∗ ∈ D∗, y∗ ∈ F (R∗),

where F (R∗) is the set of fixed points of R∗.
Let C be a nonempty closed convex subset of E, and let T be a mapping from

C into itself. We denote by F (T ) the set of fixed points of T . A point of p in C
is said to be a strong asymptotic fixed point of T if C contains a sequence {xn}
which converges strongly to p such that the strong limn→∞(Txn−xn) = 0. The

set of strong asymptotic fixed points of T will be denoted by F̃ (T ). A mapping

T from C into itself is called weak relatively nonexpansive if F̃ (T ) = F (T ) and
V2(p, Tx) ≤ V2(p, x) for all x ∈ C and p ∈ F (T ).(see[8])

In this paper, motivated by Alber [7], Iiduka and Takahashi [6] and Habtu
[2], we first introduce the generalized resolvent and discuss its properties. Sec-
ondly, we give an iterative scheme for finding a point which is a fixed point
of relatively weak nonexpansive mapping and a zero of monotone mapping.
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Finally we show its convergence.

2. Second section

Let E∗ be a reflexive and smooth Banach space and let B ⊂ E × E∗ be a
maximal monotone operator. For each λ > 0 and x ∈ E, consider the set

J∗λx
∗ := {z∗ ∈ E∗ : x∗ ∈ z∗ + λBJ−1(z∗)}.

If z∗1 +λw∗1 = x∗, z∗2 +λw∗2 = x∗, w∗1 ∈ BJ−1(z∗1), w∗2 ∈ BJ−1(z∗2), then we have
from the monotonicity of B that

〈w∗1 − w∗2 , J−1(z∗1)− J−1(z∗2)〉 ≥ 0

and hence 〈
x∗ − z∗1

λ
− x∗ − z∗2

λ
, J−1(z∗1)− J−1(z∗2)

〉
≥ 0.

So, we obtain

〈x∗ − z∗1 − (x∗ − z∗2), J−1(z∗1)− J−1(z∗2)〉 ≥ 0.

and hence
〈z∗2 − z∗1 , J−1(z∗1)− J−1(z∗2)〉 ≥ 0.

This implies z∗1 = z∗2 . Then J∗λx
∗ consists of one point. We also denote the

domain and the range of J∗λx
∗ by D(J∗λ) = R(I∗ + λBJ−1) and R(J∗λ) =

D(BJ−1), respectively, where I∗ is the identity on E∗. Such a J∗λ : E∗ → E∗

is called the generalized resolvent of B and is denoted by

J∗λ = (I∗ + λBJ−1)−1. (2.1)

We get some properties of J∗λ and (BJ−1)−10.

Proposition 2.1. Let E∗ be a reflexive and strictly convex Banach space with
a Fréchet differentiable norm and let B ⊂ E × E∗ be a maximal monotone
operator with B−10 6= Ø. Then the following hold:

(1) D(J∗λ) = E∗ for each λ > 0.
(2) (BJ−1)−10 = F (J∗λ) for each λ > 0, where F (J∗λ) is the set of fixed

points of J∗λ.
(3) (BJ−1)−10 is closed.
(4) J∗λ : E∗ → E∗ is generalized nonexpansive for each λ > 0.

Proof. (1) From the maximality of B, we have

R(J + λB) = E∗, ∀λ > 0.

Hence, for each x∗ ∈ E∗, there exists x ∈ E. such that x∗ ∈ Jx+ λBx. Since
E is reflexive and strictly convex, then J is bijective. Therefore, there exists
z∗ ∈ E∗ such that x = J−1(z∗). Therefore, we have

x∗ ∈ JJ−1(z∗) + λBJ−1(z∗) = z∗ + λBJ−1(z∗) ⊂ R(I∗ + λBJ−1) = D(J∗λ).

This implies E∗ ⊂ D(J∗λ). D(J∗λ) ⊂ E∗ is clear. So, we have D(J∗λ) = E∗.
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(2) Let λ > 0. Then we have

x∗ ∈ F (Jλ)⇔ J∗λx
∗ = x∗ ⇔ x∗ ∈ x∗ + λBJ−1(x∗)

⇔ 0 ∈ λBJ−1(x∗)⇔ 0 ∈ BJ−1(x∗)⇔ x∗ ∈ (BJ−1)−10.

(3) Let {x∗n} ⊂ (BJ−1)−10 with x∗n → x∗. From x∗n ∈ (BJ−1)−10, we have
J−1(x∗n) ∈ B−10. Since J−1 is norm to norm continuous, and B−10 is closed,
we have that J−1(x∗n) → J−1(x∗) ∈ B−10. This implies x∗ ∈ (BJ−1)−10.
That is, (BJ−1)−10 is closed.

(4) Let x∗ ∈ E∗, y∗ ∈ E∗, z∗ ∈ E∗ and λ > 0. By definition (1.1) and
calculated that

V (x∗, J−1z∗) + V (z∗, J−1y∗) = ‖x∗‖2 + ‖z∗‖2 − 2〈x∗, J−1z∗〉

+‖y∗‖2 + ‖z∗‖2 − 2〈z∗, J−1y∗〉

= V (x∗, J−1y∗)+2〈z∗−x∗, J−1z∗−J−1y∗〉,

we have that

V (x∗, J−1y∗) = V (x∗, J−1z∗) + V (z∗, J−1y∗) + 2〈x∗ − z∗, J−1z∗ − J−1y∗〉.

Let x∗ ∈ E∗, y∗ ∈ F (Jλ) and λ > 0. From above formula , we have

V (x∗, J−1y∗) = V (x∗, J−1J∗λx
∗)+V (J∗λx

∗, J−1y∗)+2〈x∗−J∗λx∗, J−1Jλx∗−J−1y∗〉.

Since
x∗−J∗

λx
∗

λ ∈ BJ−1(J∗λx
∗) and 0 ∈ BJ−1(y∗), we have

〈x∗ − J∗λx∗, J−1J∗λx∗ − J−1y∗〉 ≥ 0.

Therefore we get

V (x∗, J−1y∗) ≥ V (x∗, J−1J∗λx
∗) + V (J∗λx

∗, J−1y∗) ≥ V (J∗λx
∗, J−1y∗).

That is, J∗λ is generalized nonexpansive on E∗. �

Theorem 2.2. ([5]) Let E be a Banach space and let A ⊂ E×E∗ be a maximal
monotone operator with A−10 6= Ø. If E∗ is strictly convex and has a Fréchet
differentiable norm, then, for each x ∈ E, limλ→∞(J + λA)−1J(x) exists and
belongs to A−10.

Using Theorem 2.2, we get the following result.

Theorem 2.3. Let E∗ be a uniformly convex Banach space with a Fréchet
differentiable norm and let B ⊂ E ×E∗ be a maximal monotone operator with
B−10 6= Ø. Then the following hold:

(1) For each x∗ ∈ E∗, limλ→∞ J∗λx
∗ exists and belongs to (BJ−1)−10.

(2) If R∗x∗ := limλ→∞ J∗λx
∗ for each x∗ ∈ E∗, then R∗ is a sunny general-

ized nonexpansive retraction of E∗ onto (BJ−1)−10.
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Proof. (1) Defining a mapping Qλ from E to E by

Qλx := (I + λJ−1B))−1x, ∀x ∈ E, λ > 0,

we have, for ∀x∗ ∈ E∗, λ > 0, J∗λx
∗ = JQλJ

−1(x∗). In fact, define

x∗λ := JQλJ
−1(x∗) =

[
J(I + λJ−1B)J−1

]−1
(x∗).

Then, we have

x∗ ∈ J(I + λJ−1B)J−1(x∗λ) = (I∗ + λBJ−1)x∗λ

and hence x∗λ = J∗λx
∗. From Theorem 2.1, we get

lim
λ→∞

QλJ
−1(x∗) = u ∈ B−10.

If E∗ is uniformly convex, then E has a Fréchet differentiable norm. So, then
J is norm to norm continuous. Since B−10 is closed, we have

lim
λ→∞

J∗λx
∗ = lim

λ→∞
JQλJ

−1(x∗) = Ju ∈ JB−10 = (BJ−1)−10.

(2) Defining a mapping R∗ from E∗ to E∗ by

R∗x∗ := lim
λ→∞

J∗λx
∗ ∀x∗ ∈ E∗.

Let u∗ ∈ (BJ−1)−10 = F (J∗λx
∗). Then R∗u∗ = limλ→∞ J∗λu

∗ = limλ→∞ u∗ =
u∗. Therefore R∗ is a retraction of E∗ onto (BJ−1)−10. Since x∗ ∈ J∗λx∗ +
λBJ−1(J∗λx

∗), we have〈
x∗ − J∗λx∗

λ
, J−1(J∗λx

∗)− J−1(z∗)

〉
≥ 0, ∀z∗ ∈ (BJ−1)−10,

and hence

〈x∗ − J∗λx∗, J−1(J∗λx
∗)− J−1(z∗)〉 ≥ 0.

Letting λ→ 0, we get

〈x∗ −R∗x∗, J−1(R∗x∗)− J−1(z∗)〉 ≥ 0, ∀z∗ ∈ (BJ−1)−10

From Proposition 2.1, R∗ is sunny and generalized nonexpansive. This implies
that R∗ is a sunny generalized nonexpansive retraction of E∗ onto (BJ−1)−10.
� �

Now we construct an iterative scheme which converges strongly to a point
which is a fixed point of relatively weak nonexpansive mapping and a zero of
monotone mapping.

Theorem 2.4. Let E∗ be a uniformly convex Banach space and uniformly
smooth Banach space. let A ⊂ E×E∗ be a maximal monotone operator. Let C
be a nonempty closed convex subset of E. Let T : C → C be a relatively weak
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nonexpansive mapping with A−10 ∩ F (T ) 6= Ø. Assume that 0 ≤ αn < a < 1
is a sequence of real numbers. Then the sequence {xn} generated by

x0 ∈ C, λn → +∞,
yn = J−1(αnJxn + (1− αn)J∗λnJxn), J∗λn = (I∗ + λnAJ

−1)−1,
zn = Tyn,
H0 = {v ∈ C : V2(v, z0) ≤ V2(v, y0) ≤ V2(v, x0)},
Hn = {v ∈ Hn−1 ∩Wn−1 : V2(v, zn) ≤ V2(v, yn) ≤ V2(v, xn)},
W0 = C,
Wn = {v ∈ Hn−1 ∩Wn−1 : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wn

(x0), n ≥ 1,

(3.1)

converges strongly to ΠA−10∩F (T )(x0), where ΠA−10∩F (T ) is the generalized pro-

jection from E onto A−10 ∩ F (T ).

Proof. We first show that Hn and Wn are closed and convex for each n ≥ 0.
From the definition of Hn and Wn , it is obvious that Hn is closed and Wn is
closed and convex for each n ≥ 0. We show that Hn is convex. Since

Hn = {v ∈ Hn−1∩Wn−1 : V2(v, zn) ≤ V2(v, yn)}∩{v ∈ Hn−1∩Wn−1 : V2(v, yn) ≤ V2(v, xn)},
and that V2(v, yn) ≤ V2(v, xn) is equivalent to

2〈v, Jxn − Jyn〉+ ‖yn‖2 + ‖xn‖2 ≤ 0,

V2(v, zn) ≤ V2(v, yn) is equivalent to

2〈v, Jyn − Jzn〉+ ‖zn‖2 + ‖xn‖2 ≤ 0,

it follows that Hn is convex.
Next, we show that F =: A−10∩F (T ) ⊂ Hn∩Wn for each n ≥ 0. Let p ∈ F ,

then relatively weak nonexpansiveness of T and generalized nonexpansiveness
of J∗λ give that

V2(p, z0) = V2(p, Ty0) ≤ V2(p, y0)
= V2(p, J−1(α0Jx0 + (1− α0)J∗λ0

Jx0))
= ‖p‖2 + ‖α0Jx0 + (1− α0)J∗λ0

Jx0‖2 − 2〈p, α0Jx0 + (1− α0)J∗λ0
Jx0〉

≤ ‖p‖2 − 2α0〈p, Jx0〉 − 2(1− α0)〈p, J∗λ0
Jx0〉+ α0‖Jx0‖2 + (1− α0)‖J∗λ0

Jx0‖2
= α0(‖p‖2 − 2α0〈p, Jx0〉+ ‖x0‖2) + (1− α0)(‖p‖2 − 2〈p, J∗λ0

Jx0〉+ ‖J∗λ0
Jx0‖2)

= α0V2(p, x0) + (1− α0)V2(p, J−1J∗λ0
Jx0)

= α0V2(p, x0) + (1− α0)V (p, J∗λ0
Jx0)

≤ α0V2(p, x0) + (1− α0)V (p, Jx0)
≤ α0V2(p, x0) + (1− α0)V2(p, x0) = V2(p, x0).

(3.2)
Thus, we give that p ∈ H0. On the other hand it is clear that p ∈ C. Thus
F ⊂ H0 ∩ W0 and therefore, x1 = ΠH0∩W0

is well defined. Suppose that
F ⊂ Hn−1 ∩Wn−1 and {xn} is well defined. Then the methods in (3.2) imply
that V2(p, zn) ≤ V2(p, yn) ≤ V2(p, xn) and that p ∈ Hn. Moreover, it follows
from Lemma 1.3 that

〈p− xn, Jxn − Jx0〉 ≥ 0,
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which implies that p ∈ Wn. Hence F ⊂ Hn ∩Wn and xn+1 = ΠHn∩Wn is well
defined. Then by induction, F ⊂ Hn∩Wn and the sequence generated by (3.1)
is well defined for each n ≥ 0.

Now we show that {xn} is a bounded sequence and converges to a point of
F . Let p ∈ F . Since xn+1 = ΠHn∩Wn

(x0) and Hn ∩Wn ⊂ Hn−1 ∩Wn−1 for
all n ≥ 1, we have

V2(xn, x0) ≤ V2(xn+1, x0)

for all n ≥ 0. Therefore, {V2(xn, x0)} is nondecreasing. In addition, it follows
from definition of Wn and Lemma 1.3 that xn = ΠWn

(x0). Therefore, by
Lemma 1.2 we have

V2(xn, x0) = V2(ΠWn(x0), x0) ≤ V2(p, x0)− V2(p, xn) ≤ V2(p, x0),

for each p ∈ F (T ) ⊂ Wn for all n ≥ 0. Therefore, {V2(xn, x0)} is bounded.
This together with (3.2) implies that the limit of {V2(xn, x0)} exists. Put
limn→∞ V2(xn, x0) = d. From Lemma 1.2, we have, for any positive integer m,
that

V2(xn+m, xn) = V2(xn+m,ΠWn
(x0)) ≤ V2(xn+m, x0)− V2(ΠWn

(x0), x0)

= V2(xn+m, x0)− V2(xn, x0), (3.3)

for all n ≥ 0. The existence of limn→∞ V2(xn, x0) implies that limn→∞ V2(xm+n, xn) =
0. Thus, Lemma 1.4 implies that

xm+n − xn → 0 as n→∞ (3.4)

and hence {xn} is a Cauchy sequence. Therefore, there exists a point q ∈ E
such that xn → q as n → ∞. Since xn+1 ∈ Hn, we have V2(xn+1, zn) ≤
V2(xn+1, yn) ≤ V2(xn+1, xn). Thus by Lemma 1.4 and (3.4) we get that

xn+1 − zn → 0, xn+1 − yn → 0 as n→∞ (3.5)

and hence ‖xn−yn‖ ≤ ‖xn+1−xn‖+‖xn+1−yn‖ → 0 as n→∞. Furthermore,
since J is uniformly continuous on bounded sets, we have

lim
n→∞

‖Jxn+1 − Jzn‖ = lim
n→∞

‖Jxn − Jyn‖ = 0, (3.6)

which implies that

‖Jxn+1 − JTyn‖ → 0 as n→∞. (3.7)

Since J−1 is also uniformly norm-norm-continuous on bounded sets, we obtain

lim
n→∞

‖xn+1 − Tyn‖ = lim
n→∞

‖J−1Jxn+1 − J−1JTyn‖ = 0. (3.8)

Therefore, from (3.5), (3.8) and ‖yn − Tyn‖ ≤ ‖xn+1 − Tyn‖+ ‖xn − yn‖, we
obtain that limn→∞ ‖yn − Tyn‖ = 0. This together with the fact that {xn}
(and hence {yn}) converges strongly to q ∈ E and the definition of relatively
weak nonexpansive mapping implies that q ∈ F (T ). Furthermore, from (3.1)
and (3.6), we have that (1−αn)‖J∗λnJxn−Jxn‖ = ‖Jxn−Jyn‖ → 0 as n→∞.

Thus, limn→∞ J∗λnJxn = limn→∞ Jxn = Jq ∈ JA−10 = (AJ−1)−10, we obtain
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that q ∈ A−10.Finally, we show that q = ΠA−10∩F (T )(x0) as n → ∞. From
Lemma 1.2, we have

V2(q,ΠA−10∩F (T )(x0)) + V2(ΠA−10∩F (T )(x0), x0) ≤ V2(q, x0). (3.9)

On the other hand, since xn+1 = ΠHn∩Wn
(x0) and F ⊂ Hn ∩Wn for all n ≥ 0

we have by Lemma 1.2 that

V2(ΠA−10∩F (T )(x0), xn+1) + V2(xn+1, x0) ≤ V2(ΠA−10∩F (T )(x0), x0). (3.10)

Moreover, by the definition of V2(x, y) we get that

lim
n→∞

V2(xn+1, x0) = V2(q, x0). (3.11)

Combining (3.9),(3.11) we obtain that V2(q, x0) = V2(ΠA−10∩F (T )(x0), x0).
Therefore, it follows from the uniqueness of ΠA−10∩F (T )(x0) that q = ΠA−10∩F (T )(x0).

�

Remark 1. If in Theorem 3.1 we have that T = I, the identity map on E then
we get the following:

Corollary 2.5. Let E∗ be a uniformly convex Banach space and uniformly
smooth Banach space. let A ⊂ E × E∗ be a maximal monotone operator. Let
C be a nonempty closed convex subset of E with A−10 6= Ø. Assume that
0 ≤ αn < a < 1 is a sequence of real numbers. Then the sequence {xn}
generated by

x0 ∈ C, λn → +∞,
yn = J−1(αnJxn + (1− αn)J∗λnJxn), J∗λn = (I∗ + λnAJ

−1)−1,
H0 = {v ∈ C : V2(v, z0) ≤ V2(v, y0) ≤ V2(v, x0)},
Hn = {v ∈ Hn−1 ∩Wn−1 : V2(v, zn) ≤ V2(v, yn) ≤ V2(v, xn)},
W0 = C,
Wn = {v ∈ Hn−1 ∩Wn−1 : 〈v − xn, Jx0 − Jxn〉 ≤ 0},
xn+1 = ΠHn∩Wn(x0), n ≥ 1,

converges strongly to ΠA−10, where ΠA−10 is the generalized projection from E
onto A−10.
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