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A NEW GENERALIZED RESOLVENT AND APPLICATION
IN BANACH MAPPINGS

X1AN WANG, JUN-MIN CHEN, AND ZHEN HE

ABSTRACT. In this paper, we introduce a new generalized resolvent in a
Banach space and discuss its some properties. Using these properties, we
obtain an iterative scheme for finding a point which is a fixed point of
relatively weak nonexpansive mapping and a zero of monotone mapping.
Furthermore, strong convergence of the scheme to a point which is a fixed
point of relatively weak nonexpansive mapping and a zero of monotone
mapping is proved.

1. Introduction

Let E be a real Banach space with dual E*. We denote by J the normalized
duality mapping from E into 2. defined by

Tui= {f7 € B (w47 =l = £,

where (-, -) denotes the generalized duality pairing. It is well known that if E*
is strictly convex then J is single-valued and if E is uniformly smooth then J
is uniformly continuous on bounded subsets of E. Moreover, if F is a reflexive
and strictly convex Banach space with a strictly convex dual, then J~! is single
valued, one-to-one, surjective, and it is the duality mapping from E* into F
and thus JJ ! = Ig. = I* and J='J = Ig = I (see [3]). We note that in a
Hilbert space H, J is the identity mapping. Let E be a smooth, reflexive, and
strictly convex Banach space. We define the function V5 : E x E — R by

Va(y, @) = [l2l|* — 2(Jy, ) + lyll*, (1.1)

for Ve € E,y € E. Let C be a nonempty closed convex subset of E. For an
arbitrary point  of E, consider the set {z € C : Va(z,z) = minyec Va(y, z)}.
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It is known that this set is always a singleton(see [7])Let Il be a mapping of
FE onto C satisfying
Vo(llgz, x) = mig Va(y, x). (1.2)
ye

Such a mapping Il is called the generalized projection.
Applying the definitions of V5 and J , a functional V : E* x E — R is defined
by the formula:

V(z*,y) = Vo(J 'z*,y), Va* € E*,ycE.
In the following, we shall make use of the following lemmas.

Lemma 1.1. ([1]) Let E be a real smooth Banach space, A : E — 2F" be a
mazimal monotone mapping, then A~10 is a closed and convex subset of E and
the graph of A, G(A), is demiclosed in the following sense: YV, € D(A) with
Tn — x in E, and Yy, € Ax, with y, — y in E imply that x € D(A) and
y € Ax.

Lemma 1.2. ([7]) Let C be a nonempty closed and convex subset of a real
reflexive, strictly convex, and smooth Banach space E and let x € E. Then
yedl,

Vz(y,Hcit) + VQ(HC‘T"I) < VQ(y7I)'

Lemma 1.3. ([7]) Let C be a convex subset of a real smooth Banach space E.
Let x € E and xg € C. Then Va(xg,x) = inf{Va(z,z) : z € C} if and only if

(z —xo, Jzog — Jx) > 0.

Lemma 1.4. ([4]) Let E be a real smooth and uniformly convex Banach space
and let {xn} and {yn} be two sequences of E. If either {x,} or {yn} is bounded
and Va(zy,yn) — 0 as n — oo, then x, — y, — 0, as n — oo.

Let E* be a smooth Banach space and let D* be a nonempty closed convex
subset of E*. A mapping R* : D* — D™ is called generalized nonexpansive if
F(R*) # @ and

V(R*z*, J 'y*) < V(2*, J 'y*), Va* e D* y* € F(R"),
where F'(R*) is the set of fixed points of R*.

Let C' be a nonempty closed convex subset of F/, and let T be a mapping from
C into itself. We denote by F(T') the set of fixed points of T'. A point of p in C
is said to be a strong asymptotic fixed point of T if C' contains a sequence {z,,}
which converges strongly to p such that the strong lim,, oo (T2, —2,) = 0. The
set of strong asymptotic fixed points of T will be denoted by F (T'). A mapping
T from C into itself is called weak relatively nonexpansive if F(T) = F(T) and
Va(p, Tz) < Va(p,x) for all x € C and p € F(T).(see[8])

In this paper, motivated by Alber [7], liduka and Takahashi [6] and Habtu
[2], we first introduce the generalized resolvent and discuss its properties. Sec-
ondly, we give an iterative scheme for finding a point which is a fixed point
of relatively weak nonexpansive mapping and a zero of monotone mapping.
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Finally we show its convergence.

2. Second section

Let E* be a reflexive and smooth Banach space and let B C E x E* be a
maximal monotone operator. For each A\ > 0 and x € F, consider the set

Jia*:={z* € B* :x* € 2" + ABJ ' (2")}.
If 2§+ w} = 2%, 25 + Mwj = 2*, wi € BJ1(27), w3 € BJ71(2}), then we have
from the monotonicity of B that
(i — w3, J7H () = J7H(23)) 2 0

and hence

¥ -z ot -z ., 1
< )\ 1_ )\ 27J 1(21)_‘] 1(22)>20

So, we obtain
(@ =2 = (2" = 23), J7H(2]) = T (23)) > 0.
and hence
(25 — 27, 071 (2]) = J7H(z3)) 2 0.
This implies zi = z3. Then Jix* consists of one point. We also denote the
domain and the range of Jiz* by D(J}) = R(I* + ABJ™!) and R(J}) =
D(BJ™1), respectively, where I* is the identity on E*. Such a J} : E* — E*
is called the generalized resolvent of B and is denoted by
Ji= I+ BJH™L (2.1)

We get some properties of J; and (BJ~1)~10.
Proposition 2.1. Let E* be a reflexive and strictly convex Banach space with
a Fréchet differentiable norm and let B C E x E* be a mazimal monotone
operator with B=10 # @. Then the following hold:

(1) D(J}) = E* for each A > 0.

(2) (BJ=Y)710 = F(J3) for each A > 0, where F(J5) is the set of fized
points of J5.

(3) (BJ=1)710 is closed.

(4) J5 : E* — E* is generalized nonexpansive for each A > 0.

Proof. (1) From the maximality of B, we have
R(J+AB)=FE*, YA>0.

Hence, for each z* € E*, there exists x € E. such that z* € Jz + ABx. Since
FE is reflexive and strictly convex, then J is bijective. Therefore, there exists
z* € E* such that x = J~!(z*). Therefore, we have

o* € JJTHZY) + ABJ M (2*) = 2* + ABJH(2*) € R(I* + ABJ ') = D(J3).
This implies E* C D(J5). D(JX) C E* is clear. So, we have D(J5) = E*.
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(2) Let A > 0. Then we have
¥ € F(J)) & Jiz* =a* & 2" € 2* + ABJ ' (z*)

S0€ABJ N (z*) = 0eBJ (2% &z c (BT ).

(3) Let {x:} C (BJ~Y)710 with a7 — z*. From 27 € (BJ1)~!0, we have
J~Y(zr) € B710. Since J~! is norm to norm continuous, and B~10 is closed,
we have that J=!(z}) — J~Y(2*) € B~'0. This implies z* € (BJ~1)~t0.

n

That is, (BJ~1)710 is closed.
(4) Let «* € E*, y* € E*,2z* € E* and A > 0. By definition (1.1) and
calculated that

V(@ J72) + V(" T hy") = o |P + 1277 = 2(a*, T 712%)
Hly I + 127117 = 22", T~ 1y")
— V(" Ty )20, T Ty,
we have that
V(z*, J ") = Ve, J72") + V(5 Ty + 20 — 2, Tt — Ty,
Let * € E*,y* € F(Jy) and A > 0. From above formula , we have
V(x*, J ") = V(a*, T e AV (TR, Ty ) R 2 e — T, T et =Ty,
Since % € BJ'(Jiz*) and 0 € BJ~!(y*), we have
(x* — Jia*, J V™ — T 1y*) > 0.
Therefore we get
V(z*, J ") > Vi, J T Ta®) + V(J5a®, T hy) > VI(J5a®, T y).
That is, Jy is generalized nonexpansive on E*. O

Theorem 2.2. ([5]) Let E be a Banach space and let A C Ex E* be a mazimal
monotone operator with A=10 # @. If E* is strictly convex and has a Fréchet
differentiable norm, then, for each x € E, imy_o0(J + AA) "1 J () exists and
belongs to A~10.

Using Theorem 2.2, we get the following result.

Theorem 2.3. Let E* be a uniformly convex Banach space with a Fréchet
differentiable norm and let B C E x E* be a maximal monotone operator with
B7'0 # @. Then the following hold:

(1) For each x* € E*, limy_y0oo Jiz* exists and belongs to (BJ~1)710.

(2) If R*z* :=limy_ o Jyx* for each x* € E*, then R* is a sunny general-
ized monexpansive retraction of E* onto (BJ~1)710.
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Proof. (1) Defining a mapping @ from F to E by
Qaz:=(I+XJ'B)" 'z, VacE >0,
we have, for Vo* € E*,\ > 0, Jiz* = JQx\J '(z*). In fact, define

2y = JQA M) = [J(IT+ AT B)J 1]

Then, we have
g€ JI+ N 'B)J  (z3) = (I* + ABJ 1)z},
and hence z} = Jiz*. From Theorem 2.1, we get
Jim. QxJ ' (z*) =ue B7'0.

If £* is uniformly convex, then E has a Fréchet differentiable norm. So, then
J is norm to norm continuous. Since B0 is closed, we have

lim J{z" = lim JQx\J Y(z*) = Jue JB7'0= (BJ H)t0.
—00

A—00
(2) Defining a mapping R* from E* to E* by
R*z* := lim Jyz* Va* e E*".
A—00
Let u* € (BJ 1)~10 = F(J{z*). Then R*u* = limy 00 JXu* = limy o0 u* =
u*. Therefore R* is a retraction of E* onto (BJ~!)7!0. Since z* € Jiz* +
ABJ~*(J;z*), we have

* _ J* *
<W,J‘1(Jj\*x*) - J—l(z*)> >0, Ve (BJ Yo,

and hence
(x* — Jia*, J N (J5z™) — JH(z%)) > 0.
Letting A — 0, we get
(x* — R*z*, J Y (R*z*) — J1(2*)) >0, Vz*e(BJ H710

From Proposition 2.1, R* is sunny and generalized nonexpansive. This implies
that R* is a sunny generalized nonexpansive retraction of E* onto (BJ~1)~10.
O O

Now we construct an iterative scheme which converges strongly to a point
which is a fixed point of relatively weak nonexpansive mapping and a zero of
monotone mapping.

Theorem 2.4. Let E* be a uniformly conver Banach space and uniformly
smooth Banach space. let A C E x E* be a mazimal monotone operator. Let C
be a nonempty closed convex subset of E. Let T : C' — C be a relatively weak
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nonexpansive mapping with A~10N F(T) # @. Assume that 0 < a,, < a < 1
is a sequence of real numbers. Then the sequence {x,} generated by

xg € C, A\, = +00,
Yn = J HanJon + (1 —an)J5 Jn), J5 =T+ AT )7
Zn = Tyn,
Hy ={v e C:Va(v,20) < Va(v,90) < Va(v,20)},
={w e Hy 1 NWyu1:Va(v,2,) < Va(v,yn) < Va(v,2,)},
Wy =C,
Wp={veH,_ 1NW,_1:{v—x,, Jrg— Jz,) <0},
Tpt1 = u, 0w, (¥0), n>1,

(3.1)

converges strongly to Il y—19np () (z0), where ILa—19np(ry is the generalized pro-
jection from E onto A~10N F(T).

Proof. We first show that H, and W,, are closed and convex for each n > 0.
From the definition of H,, and W,, , it is obvious that H,, is closed and W, is
closed and convex for each n > 0. We show that H,, is convex. Since

H,={veH, 1NW,_1:Va(v,2,) < Va(v,yn)}n{v € Hy1NW,_1 : Va(v,yn) < Va(v,z,)},
and that Va(v,y,) < Va(v,z,) is equivalent to

2(v, Jxp = Jyn) + [yl + llzal* < 0,
Va(v, z,) < Va(v,yn) is equivalent to

200, Jyn = Jzn) + 2l + lzal® < 0,

it follows that H,, is convex.

Next, we show that F =: A='0NF(T) C H,NW,, foreachn > 0. Letp € F,
then relatively weak nonexpansiveness of 1" and generalized nonexpansiveness
of J§ give that

Va(p,20) = Va(p, Tyo) < Va(p,yo)
= Va(p, J M (aoJxo + (1 — ) J5, Jx0))
= |Ipll* + llaoJzo + (1 — ) 5, Jxol|* = 2(p, a0 Jxo + (1 — ag) 5, Jo)
< Ipll* = 2a0(p, Jxo) — 2(1 — ag){p, J5, Jx0) + aollJzol|* 4 (1 — ao) |J%, J2o||*
= ao(|[plI* — 200(p, Jxo) + l|zol|?) + (1 — ao)(lIpl|* = 2(p, J5, Jzo) + [|J5, J2ol|?)

= aoVa(p,20) + (1 — o) Va(p, J~J5, Jao)

= agVa(p, zo) + (1 — )V (p, J5, J0)

< agVa(p,zo) + (1 — o)V (p, Jxo)

< agVa(p, o) + (1 — ap)Va(p, v0) = Va(p, o).

(3.2)
Thus, we give that p € Hy. On the other hand it is clear that p € C. Thus
F C HyoN Wy and therefore, 1 = Ilg,Aw, is well defined. Suppose that
FCH, 1 NW,_1 and {z,} is well defined. Then the methods in (3.2) imply
that Va(p, zn) < Va(p,yn) < Va(p,x,) and that p € H,,. Moreover, it follows
from Lemma 1.3 that
<p_ T, JTy — J:L'0> >0,
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which implies that p € W,,. Hence F' C H, N W,, and x,,+1 = Iy, Aw, is well
defined. Then by induction, F' C H, "W,, and the sequence generated by (3.1)
is well defined for each n > 0.

Now we show that {x,} is a bounded sequence and converges to a point of
F. Let p € F. Since zp+1 = gy, Aw, (x0) and H, "W,, C H,_1 N W,,_; for
all n > 1, we have

Va(2n, z0) < Va(Tnt1, o)
for all n > 0. Therefore, {Va(xy,zo)} is nondecreasing. In addition, it follows
from definition of W, and Lemma 1.3 that z,, = IIw, (z¢). Therefore, by
Lemma 1.2 we have

‘/Q(mHaxO) - ‘/Q(HWN(QSO)7$O) S VQ(pv 1’0) - ‘/2(pa zn) S ‘/2(p7 170),

for each p € F(T) C W, for all n > 0. Therefore, {Va(z,,20)} is bounded.
This together with (3.2) implies that the limit of {Va(z,,z0)} exists. Put
lim,, o0 Vo(2p,xo) = d. From Lemma 1.2, we have, for any positive integer m,
that

V&(.’L‘ner,In) = ‘/é(xn+maHW,L (.’IJO)) < ‘/2<xn+ma$0) - ‘/2<HW,L (x0)7$0)

= VZ(mn—&-ma 'rO) - ‘/2(-177“ ZE()), (33)
for alln > 0. The existence of lim,,—, oo Va(2n, 2o) implies that lim, o Va(Tmin, Tn) =
0. Thus, Lemma 1.4 implies that

Tman —Tn =0 as n— 00 (3.4)

and hence {z,} is a Cauchy sequence. Therefore, there exists a point ¢ € E
such that z, — ¢ as n — oo. Since zp41 € H,, we have Va(xpy1,2,) <
Va(Znt1, Yn) < Vo(@pt1,2n). Thus by Lemma 1.4 and (3.4) we get that

Tpt1 —2n =0, Zpi1—y, —0 as n— oo (3.5)
and hence ||, —yn|| < |Tnt1—Zn||+|Tn+1—Yn|| = 0 as n — oo. Furthermore,

since J is uniformly continuous on bounded sets, we have

lJzpt1 — Jzn| = lim ||Jz, — Jy,| =0, (3.6)
n—oo

lim
n—oo
which implies that
|Jzpt1 — JTyn|| =0 as n— oo. (3.7)
Since J~! is also uniformly norm-norm-continuous on bounded sets, we obtain

lim [[zn1 = Tynll = lim T Jzpy — J HITy,| = 0. (3.8)
n—oo n o0

Therefore, from (3.5), (3.8) and ||yn — Tynll < l|Zn+1 — Tynll + |2n — ynl, we
obtain that lim, e ||yn — Tyn| = 0. This together with the fact that {x,}
(and hence {y,}) converges strongly to ¢ € E and the definition of relatively
weak nonexpansive mapping implies that ¢ € F(T). Furthermore, from (3.1)
and (3.6), we have that (1—ay,)||J5, Jon—Jxn|| = [[Jzn—Jyul| — 0 asn — oo.
Thus, limy, 00 J3, Jop = limy o0 Jzn, = Jq € JATY0 = (AJ~1)~10, we obtain
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that ¢ € A~'0.Finally, we show that ¢ = Ilq-10np(r)(20) as n — co. From
Lemma 1.2, we have

Va(q, Ma-10np(7)(20)) + Va(ILa-10n7 (1) (%0), 7o) < Va(q, 7o) (3.9)

On the other hand, since z,+1 = g, Aw, (z9) and F C H, N W, for alln >0
we have by Lemma 1.2 that

Vol a-10np(1) (20)s Zng1) + Va(@nir, 20) < Va(llg-10np () (T0), 20).  (3.10)
Moreover, by the definition of Va(z,y) we get that

Jim Va(2n 41, 20) = Va(g: Zo)- (3.11)

Combining (3.9),(3.11) we obtain that Va(q,2z0) = Va(ILa-10nr(r)(70), To)-
Therefore, it follows from the uniqueness of 11y~ 19n g (7 (%0) that ¢ = IT 4100 p(1) (20)-
U

Remark 1. If in Theorem 3.1 we have that T'= I, the identity map on E then
we get the following:

Corollary 2.5. Let E* be a uniformly convexr Banach space and uniformly
smooth Banach space. let A C E x E* be a mazximal monotone operator. Let
C be a nonempty closed convex subset of E with A=10 # @. Assume that
0 < a, < a <1 is a sequence of real numbers. Then the sequence {x,}
generated by

o € C, A\, — 00,

Yn = J HanJxy + (1 —an)J5 Jrn), Ji =T+ AT
Hoy = {’U €eC: ‘/Q(vaz()) < VQ(U’yO) < ‘/2(0,960)}7
H,={veH, 1 NWy_1:Va(v,2,) < Va(v,yn) < Va(v,z,)},

Wy = C,

Wp={veH, 1NW,_1:(v—xy,,Jeg— Jzx,) <0},

Tny1 =g, Aw, (o), n>1,

converges strongly to Il 4-1q, where Il 4-1¢ is the generalized projection from E
onto A=10.
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