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DYNAMICAL COCYCLES ASSOCIATED WITH CERTAIN

NON-MEDIAL LEFT-DISTRIBUTIVE QUASIGROUPS

Hyun-Jong Song* and Hyo-Seob Sim

Abstract. The purpose of this paper is to explicitly present Andruskiewitsch-

Graña’s dynamical cocycles associated with the two known non-medial

left-distributive quasigroups of order 15 which are extensions of the dihe-
dral quandle of order 3 by those cocycles.

1. Introduction

In knot theory, quandles were considered by G. Wraith and J. Conway in
1959 as a generalization of a group with the binary operation given by conju-
gation, and further developed by D. Joice [7] in 1980 for invariants of knots.
In particular, connected finite quandles receive attentions for generalization of
the classical Fox’s n-colorings of knots [12].

A family of connected finite quandles were already investigated in the other
area of mathematics with terms such as distributive (both left and right) or left-
distributive quasigroups which include all connected finite Alexander quandles,
a major class of finite quandles in knot theory.

Since it is known that for order < 81 any distributive quasigroup is necessar-
ily medial (c.f. [10] or [8]), one may ask if there are non-medial left-distributive
quasigroups of order < 81. We take this opportunity to keep tracking of the
status of the above question. Around 2008, Baik-Sim-Song circulated an un-
published manuscript [2] reporting existence of two non-medial left-distributive
quasigroups of order 15. One of them was referred to as Galkin and denoted by
G15; the other Stanovsky and S15. Indeed Galkin [5] showed G15 in his survey
article of quasigroups. On the other hand Stanovsky [11] constructed S15 by
using a computer. Later on Clark and et al.[3] extended Galikin’s construction;
in particular they pointed out that there are only two Galkin type quasigroups
G[Z5, [0]) and G[Z5, [1]) of order 15. Finally Vendramin [14] and Vlachy [15]
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independently proved that there are no more non-medial left-distributive quasi-
groups of order 15 except for G[Z5, [0]) and G[Z5, [1]). In his survey article [4]
Elhamdadi reviewed on the progress mentioned in the above. The purpose of
this paper is to explicitly present Andruskiewitsch-Graña’s dynamical cocycles
[1] associated with G15 = G(Z5, [0]) and S15 = G(Z5, [1]), which are extensions
of the dihedral quandle of order 3 (referred to as the Tait quandle for short)
by those cocycles.

2. Preliminaries

In this paper we adopt the left-handed definition of a quandle in order to be
in concordance with treatment of previous results used in the work on which
our research is based.

We recall some terminologies for binary systems.
A groupoid (X, ∗), a non-empty set X with a binary operation ∗, is said to

be:
(1) idempotent if for each x ∈ X x ∗ x = x ,
(2) left-invertible if for each x ∈ X the function Lx : X → X defined by

Lx(y) = x ∗ y(y ∈ X) is bijective,
(3) right-invertible if for each y ∈ X the function Ry : X → X defined by

Ry(x) = x ∗ y(x ∈ X) is bijective,
(4) left-distributive if for each x, y, z ∈ X x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z),
(5) right-distributive if for each x, y, z ∈ X (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z),
(6) distributive if both left- and right-distributive,
(7) medial if for each x, y, z, w ∈ X (x ∗ y) ∗ (z ∗ w) = (x ∗ z) ∗ (y ∗ w).
An idempotent, left-invertible and left-distributive groupoid is called a quan-

dle, and a left- as well as right- invertible groupoid is called a quasigroup.
For a quandle (Q, ∗), we call each bijection Lx, (x ∈ Q) a left-translation

which is an automorphisms of Q due to left-distributivity. The group generated
by {Lx|x ∈ Q} is called the inner automorphism group of Q and denoted by
Inn∗(Q). A quandle (Q, ∗) is said to be connected if Inn∗(Q) acts transitively
on Q, i.e., for each x, y ∈ Q there exists φ ∈ Inn∗(Q) such that φ(x) = y.

In the sequel we assume that all groupoids we deal with are finite. From
Lemma 2.1 to Theorem 2.4 we recall some well-known facts in quasigroup
theory.

Lemma 2.1. If (X, ∗) is a left-distributive quasigroup then, (X, ∗) is idempo-
tent.

Remark. A left-distributive quasigroup is referred to as a Latin quandle in
some literatures due to the fact that a multiplication table of a quasigroup of
order n constitutes a Latin square, namely an n×n array (matrix in which each
of the n2 cells contain a number from I = {1, 2, · · · , n} so that each number of
I occurs just once in each row and once in each column.
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Lemma 2.2. If (X, ∗) is a medial idempotent quasigroup, then (X, ∗) is a
distributive quasigroup.

However the converse is not true in general as stated in the introduction.

Lemma 2.3. Let A = (A,+) be an abelian group with two commuting auto-
morphisms f, g of A and let c be a fixed element of A. Then for the binary
operation ∗ defined by x ∗ y = f(x) + g(y) + c, (A, ∗) is a medial quasigroup.

Conversely, we have the Toyoda representation theorem [13].

Theorem 2.4. Let (Q, ∗) be a medial quasigroup, then there exists a abelian
group (Q,+), two commuting automorphisms f, g of (Q,+) and a fixed element
of Q such that x ∗ y = f(x) + g(y) + c.

Lemma 2.5. Let A be an abelian group and g be an automorphism of A. Then
for an Alexander quandle (A, ∗) defined by

a ∗ b = (I − g)(a) + g(b), (a, b ∈ A),

where I denotes the identity automorphism of A, the following statements are
all equivalent.

(i) (A, ∗) is a quasigroup.
(ii) (A, ∗) is connected.
(iii) f = I − g is an automorphism of A.

Proof. Implications (i)⇒ (ii) and (iii)⇒ (i) are elementary.
(ii)⇒ (iii): Let 0 be the neutral element of (A,+). For an arbitrary element

b of A consider an automorphism φ ∈ Inn∗(A) such that φ(0) = b. Then there
exist a1, a2, · · · , an ∈ A such that φ = La1 La2 · · ·Lan . Hence we have

b = φ(0) = a1 ∗ (a2 ∗ · · · ∗ (an ∗ 0) · · · ) ∈ 0 + f(A).

Thus f is an epimorphism and hence an automorphism of A since A is finite. �

Corollary 2.6. Any connected Alexander quandle is a medial idempotent quasi-
group and vice versa.

Proof. It is easy to verify mediality and idempotency of an Alexander quandle.
Hence one direction is followed from Lemma 2.5. From the Toyoda represen-
tation theorem and idempotency of (Q, ∗) we have

0 = 0 ∗ 0 = f(0) + g(0) + c; c = 0.

Then applying idempotency of (Q, ∗) once more, we see that

a = a ∗ a = f(a) + g(a) ∀a ∈ Q; f = I − g.
Thus we have the other direction. �
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The last part of this section is a brief introduction of Andruskiewitsch-Graña’
extension theory of quandles by dynamical cocycles. For more details see [1].

For a quandle (X, ·) and a non-empty set S, a function α : X×X → SS×S is
said to be a dynamical cocycle if the following conditions hold for αxy = α(x, y):

(i) αxx(a, a) = a for all x ∈ X and a ∈ S
(ii) αxy(a,−) : S → S is bijection for all x, y ∈ X and for all a ∈ S
(iii) αx(y·z)(a, αyz(b, c)) = α(x·y)(x·z)(αxy(a, b), αxz(a, c)) for all x, y, z ∈ X

and for all a, b, c ∈ S
Given a quandle (X, ·) with a dynamical cocycle α, by defining a binary

operation ∗ on a set X × S so that

(x, a) ∗ (y, b) = (x · y, αxy(a, b)) ∀(x, a), (y, b) ∈ X × S

we have a quandle which is called an extension of X by a dynamical 2-cocycle
α and denoted by X ×α S.

For an extension E = X ×α S, X = (X, ·) is called the base (of E). And we
have the natural projection π : E → X defined by π(x, a) = x (x ∈ X, a ∈ S),
which is a quandle homomorphism. Then for each x ∈ X a subquandle Ex =
π−1(x) of E is called a fiber (of E).

The following lemma may be utilized to see if a given quandle (E, ∗) is
extended from a quandle (X, ·) by a dynamical cocycle α.

Lemma 2.7. [1] Let (E, ∗) be a quandle satisfying following conditions:
(i) E is a disjoint union E = ∪x∈XEx for a non-empty set X,
(ii) a binary operation · is defined on X so that Ex ∗ Ey = Ex·y for all

x, y ∈ X,
(iii) |card(Ex)| = |card(Ey)| for all x, y ∈ X.
Then (X, ·) is a quandle. Furthermore, let S be a set such that card(S) =

card(Ex) and take a bijection gx : Ex → S for each x ∈ X. Then a function
α : X ×X → SS×S defined by

αxy(a, b) = gx·y(g−1x (a) ∗ g−1y (y))

is a dynamical cocycle and E ∼= X ×α S

3. Main results

3.1. A dynamical cocycle associated with the Galkin quandle G15

For examples of non-medial left-distributive quasigroups, in his survey article
[5] Galkin considered a binary operation on a set G3p = Zp × Z3 defined by

(a, x) ◦ (b, y) = (µ(−x+ y)a− b+ τ(−x+ y),−x− y)

where a function µ : Z3 → Z5 is defined so that µ(x) = 2 for x = 0, µ(x) = −1
for x 6= 0, and a function τ : Z3 → Zp is defined so that τ(0) = 0. In particular
he showed that for odd prime p, the above quandles are indeed non-medial
left-distributive quasigroups, We call them Galkin quandles. One notices that
the function τ is rather ambiguously defined. Unfortunately, we could not
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access to his unpublished Russian paper [6] possibly containing more accurate
information regarding τ . Indeed Clark and et al. [3] more rigorously denoted
Galkin quandles by G(Zp, c1, c2) where ci = τ(i) for i = 1, 2. Then they
showed that G(Zp, c1, c2) is isomorphic to G[Zp, 0, c2 − c1) which is denoted
by G(Zp, c2 − c1) for short. Furthermore they proved that up to isomorphism
there are two Galkin quandles of order 15; G(Z5, [0]) and G(Z5, [1]) where [c]
denotes the modulo class of c with respect to p. In [2] we took c1 = c2 = 0 for
a Galkin quandle G15 which corresponds to G(Z5, [0]).

To see that G15 is indeed an extension of the Tait quandle by a dynamical
cocycle. We work with a multiplication table of G15. Although our strat-
egy for a proof of the following theorem is based on Lemma 2.7 we do not
assume left-distributivity of G15 for a self-contained proof. We derive a func-
tion α : X × X → SS×S from the multiplication table of G15 and show that
α is indeed a dynamical cocyle associated with an extension of the Tait quandle.

Theorem 3.1. Let G15 = (Z15, ∗) be a quasigroup defined by a binary opera-
tion in TABLE 1. Then G15 is an extension of the Tait quandle by a dynamical
cocycle.

* 0 3 6 9 12 1 4 7 10 13 2 5 8 11 14
0 0 12 9 6 3 2 14 11 8 5 1 13 10 7 4
3 6 3 0 12 9 14 11 8 5 2 13 10 7 4 1
6 12 9 6 3 0 11 8 5 2 14 10 7 4 1 13
9 3 0 12 9 6 8 5 2 14 11 7 4 1 13 10
12 9 6 3 0 12 5 2 14 11 8 4 1 13 10 7
1 2 14 11 8 5 1 13 10 7 4 0 12 9 6 3
4 14 11 8 5 2 7 4 1 13 10 12 9 6 3 0
7 11 8 5 2 14 13 10 7 4 1 9 6 3 0 12
10 8 5 2 14 11 4 1 13 10 7 6 3 0 12 9
13 5 2 14 11 8 10 7 4 1 13 3 0 12 9 6
2 1 13 10 7 4 0 12 9 6 3 2 14 11 8 5
5 13 10 7 4 1 12 9 6 3 0 8 5 2 14 11
8 10 7 4 1 13 9 6 3 0 12 14 11 8 5 2
11 7 4 1 13 10 6 3 0 12 9 5 2 14 11 8
14 4 1 13 10 7 3 0 12 9 6 11 8 5 2 14

TABLE 1 : the Galkin quandle G15

Proof. Let E = G15 and Ex = {x, 3 + x, 6 + x, 9 + x, 12 + x} for each x ∈ Z3.
And take X in Lemma 2.7 as the Tait quandle R3 = (Z3, ·) which has a
multiplication table:
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0 1 2
0 0 2 1
1 2 1 0
2 1 0 2

TABLE 2: the Tait quandle R3

Further let S = Z5 and take bijections gx : Ex → S in Lemma 2.7 so that
gx(x) = 0, gx(3 +x) = 1, gx(6 +x) = 2, gx(9 +x) = 3 and gx(12 +x) = 4. Then
one can easily see that the condition (ii) of Lemma 2.7 holds for G15. Moreover
the function α : X ×X → SS×S defined by αxy(a, b) = gx·y(g−1x (a) ∗ g−1y (y))
can be explicitly determined as shown in TABLE 3.

g−10 (E0) g−11 (E1) g−12 (E2)

g−10 (E0) α00(a, b) = 2a− b α01(a, b) = −a− b α02(a, b) = −a− b
g−11 (E1) α10(a, b) = −a− b α11(a, b) = 2a− b α12(a, b) = −a− b
g−12 (E2) α20(a, b) = −a− b α21(a, b) = −a− b α22(a, b) = 2a− b

TABLE 3

Note for instance that for each x ∈ R3, (Z5, αxx) is R5, the dihedral quandle
of order 5.

Now we show that α is indeed a dynamical cocycle. It is enough to check
that the identity

αx(y·z)(a, αyz(b, c)) = α(x·y)(x·z)(αxy(a, b), αxz(a, c))

holds for every x, y, z ∈ R3 and a, b, c ∈ Z5. Put the left and right hand side of
above identity (LHS) and (RHS) respectively.

CASE 1: x 6= y and y 6= z

(LHS) = αxx(a,−b− c)
= 2a+ b+ c

(RHS) = αxy(−a− b,−a− c)
= 2a+ b+ c

CASE 2: x 6= y and y = z

(LHS) = αxy(a, αyy(b, c))
= αxy(a, 2b− c)
= −a− 2b+ c

(RHS) = α(x·y)(x·y)(αxy(a, b), αxy(a, c))
= α(x·y)(x·y)(−a− b,−a− c)
= −a− 2b+ c
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CASE 3: x = y and y 6= z

(LHS) = αx(x·z)(a,−b− c)
= −a+ b+ c

(RHS) = αx(x·z)(αxx(a, b), αxz(a, c))
= αx(x·z)(2a− b,−a− c)
= −a+ b+ c

CASE 4: x = y = z

(LHS) = αxx(a, αxx(b, c))
= αxx(a, 2b− c)
= 2a− 2b+ c

(RHS) = αxx(αxx(a, b), αxx(a, c))
= αxx(2a− b, 2a− c)
= 2a− 2b+ c

�

3.2. A dynamical cocycle associated with the Stanovsky quandle S15

We say that quasigroups (Q, ∗) and(R, ◦) are isotopic, if there are bijections
α, β, γ : Q → R such that α(x ∗ y) = β(x) ◦ γ(y) for all x, y ∈ Q. Then the
Toyoda representation theorem says that a medial quasigroup (Q, ∗) is isotopic
to an abelian group (Q,+).

Likewise, it is known that any distributive quasigroup (Q, ·) is isotopic to a
commutative Moufang loop (Q, ◦) in such a way that

a ◦ b = Le(a) ·Re(b)

where e is a fixed element of Q, and Le, Re are the left and right translation
of e respectively. As for a left-distributive quasigroup it is expected that it is
isotopic to so called a Bol loop. But Stanovsky [11] came up with a counter-
example to this idea by using a computer as shown in TABLE 4.

His example attracts our attentions because of its non-mediality. Through
quandle isomorphisms, we can transform TABLE 4 into TABLE 5 which may
be thought of as a kind of a normalized multiplication table for an extension
of the Tait quandle with fiber isomorphic to R5 as in the case of the Galkin
quandle G15.
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* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 0 2 4 1 6 3 8 5 10 7 9 12 11 14 13
1 3 1 0 11 5 4 12 14 9 8 13 7 2 6 10
2 1 12 2 6 0 13 3 10 11 14 7 4 5 9 8
3 5 0 7 3 11 12 10 2 14 13 6 1 9 8 4
4 2 8 11 14 4 9 0 13 1 5 12 3 6 10 7
5 7 9 12 0 8 5 13 11 4 1 14 10 3 2 6
6 4 13 10 7 12 14 6 3 0 11 2 8 1 5 9
7 9 11 6 10 14 0 2 7 13 12 3 5 8 4 1
8 6 5 14 13 9 1 11 12 8 4 0 2 10 7 3
9 10 4 13 12 1 8 14 0 5 9 11 6 7 3 2
10 8 14 3 2 13 11 7 6 12 0 10 9 4 1 5
11 14 3 8 4 2 7 9 1 6 10 5 11 13 12 0
12 13 6 1 5 10 2 4 9 7 3 8 14 12 0 11
13 11 10 5 9 7 6 1 8 3 2 4 0 14 13 12
14 12 7 9 8 3 10 5 4 2 6 1 13 0 11 14

TABLE 4

Theorem 3.2. Let S15 = (Z15, ∗) be a quasigroup defined by a binary operation
in TABLE 5. Then S15 is an extension of the Tait quandle by a dynamical
cocycle.

* 0 3 6 9 12 1 4 7 10 13 2 5 8 11 14
0 0 12 9 6 3 2 11 5 14 8 10 1 7 13 4
3 6 3 0 12 9 5 14 8 2 11 4 10 1 7 13
6 12 9 6 3 0 8 2 11 5 4 13 4 10 1 7
9 3 0 12 9 6 11 5 4 8 2 7 13 4 10 1
12 9 6 3 0 12 14 8 2 11 5 1 7 13 4 10
1 5 8 11 14 2 1 13 10 7 4 0 3 6 9 12
4 14 2 5 8 11 7 4 1 13 10 6 9 12 0 3
7 8 11 14 2 5 13 10 7 4 1 12 0 3 6 9
10 2 5 8 11 14 4 1 13 10 7 3 6 9 12 0
13 11 14 2 5 8 10 7 4 1 13 9 12 0 3 6
2 1 10 4 13 7 12 3 9 0 6 2 14 11 8 5
5 7 1 10 4 13 0 6 12 3 9 8 5 2 14 11
8 13 7 1 10 4 3 9 0 6 12 14 11 8 5 2
11 4 13 7 1 10 6 12 3 9 0 5 2 14 11 8
14 10 4 13 7 1 9 0 6 12 3 11 8 5 2 14

TABLE 5: the Stanovsky quandle S15

Proof. With the notations in the proof of Theorem 3.1, from TABLE 5 we can
come up with a function α : X ×X → SS×S as shown in TABLE 6.
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g−10 (E0) g−11 (E1) g−12 (E2)

g−10 (E0) α00(a, b) = 2a− b α01(a, b) = a+ 3b α02(a, b) = 3a+ 2b+ 3

g−11 (E1) α10(a, b) = 3a+ b+ 1 α11(a, b) = 2a− b α12(a, b) = 2a+ b

g−12 (E2) α20(a, b) = 2a+ 3b α21(a, b) = a+ 2b+ 4 α22(a, b) = 2a− b

TABLE 6

The following rutin calculations show that α is indeed a dynamical cocycle.

CASE I) x 6= y, y 6= z

(1) x = 0, y = 1, z = 2 : α0(1·2)(a, α12(b, c)) = α(0·1)(0·2)(α01(a, b), α02(a, c))

(LHS) = α00(a, 2b+ c)

= 2a+ 3b+ 4c (in Z5)

(RHS) = α21(a+ 3b, 3a+ 2c+ 3)

= 2a+ 3b+ 4c (in Z5)

(2) x = 0, y = 2, z = 1 : α0(2·1)(a, α21(b, c)) = α(0·2)(0·1)(α02(a, b), α01(a, c))

(LHS) = α00(a, b+ 2c+ 4)

= 2a+ 4b+ 3c+ 1 (in Z5)

(RHS) = α12(3a+ 2b+ 3, a+ 3c)

= 2a+ 4b+ 3c+ 1 (in Z5)

(3) x = 1, y = 0, z = 2 : α1(0·2)(a, α02(b, c)) = α(1·0)(1·2)(α10(a, b), α12(a, c))

(LHS) = α11(a, 3b+ 2c+ 3)

= 2a+ 2b+ 3c+ 2 (in Z5)

(RHS) = α20(3a+ b+ 1, 2a+ c)

= 2a+ 2b+ 3c+ 2 (in Z5)

(4) x = 1, y = 2, z = 0 : α1(2·0)(a, α20(b, c)) = α(1·2)(1·0)(α12(a, b), α10(a, c))

(LHS) = α11(a, 2b+ 3c)

= 2a+ 3b+ 2c (in Z5)

(RHS) = α02(2a+ b, 3a+ c+ 1)

= 2a+ 3b+ 2c (in Z5)

(5) x = 2, y = 0, z = 1 : α2(0·1)(a, α01(b, c)) = α(2·0)(2·1)(α20(a, b), α21(a, c))

(LHS) = α22(a, b− 2c)

= 2a+ 4b+ 2c (in Z5)

(RHS) = α10(2a+ 3b, a+ 2c+ 4)

= 2a+ 4b+ 2c (in Z5)
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(6) x = 2, y = 1, z = 0 : α2(1·0)(a, α10(b, c)) = α(2·1)(2·0)(α21(a, b), α20(a, c))

(LHS) = α22(a, 3b+ c+ 1)

= 2a+ 2b+ 4c+ 4 (in Z5)

(RHS) = α01(a+ 2b+ 4, 2a+ 3c)

= 2a+ 2b+ 4c+ 4(in Z5)

CASE II) x = y, y 6= z

(1) x = y = 0, z = 1 : α0(0·1)(a, α01(b, c)) = α(0·0)(0·1)(α00(a, b), α01(a, c))

(LHS) = α02(a, b+ 3c)

= 3a+ 2b+ c+ 3 (in Z5)

(RHS) = α02(2a− b, a+ 3c)

= 3a+ 2b+ c+ 3 (in Z5)

(2) x = y = 0, z = 2 : α0(0·2)(a, α02(b, c)) = α(0·0)(0·2)(α00(a, b), α02(a, c))

(LHS) = α01(a, 3b+ 2c+ 3)

= a+ 4b+ c+ 4 (in Z5)

(RHS) = α01(2a− b, 3a+ 2c+ 3)

= a+ 4b+ c+ 4 (in Z5)

(3) x = y = 1, z = 0 : α1(1·0)(a, α10(b, c)) = α(1·1)(1·0)(α11(a, b), α10(a, c))

(LHS) = α12(a, 3b+ c+ 1)

= 2a+ 3b+ c+ 1 (in Z5)

(RHS) = α12(2a− b, 3a+ c+ 1)

= 2a+ 3b+ c+ 1 (in Z5)

(4) x = y = 1, z = 2 : α1(1·2)(a, α12(b, c)) = α(1·1)(1·2)(α11(a, b), α12(a, c))

(LHS) = α10(a, 2b+ c)

= 3a+ 2b+ c+ 1 (in Z5)

(RHS) = α10(2a− b, 2a+ c)

= 3a+ 2b+ c+ 1 (in Z5)

(5) x = y = 2, z = 0 : α2(2·0)(a, α20(b, c)) = α(2·2)(2·0)(α22(a, b), α20(a, c))

(LHS) = α21(a, 2b+ 3c)

= a+ 4b+ c+ 4 (in Z5)

(RHS) = α21(2a− b, 2a+ 3c)

= a+ 4b+ c+ 4 (in Z5)
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(6) x = y = 2, z = 1 : α2(2·1)(a, α21(b, c)) = α(2·2)(2·1)(α22(a, b), α21(a, c))

(LHS) = α20(a, b+ 2c+ 4)

= 2a+ 3b+ c+ 2 (in Z5)

(RHS) = α20(2a− b, a+ 2c+ 4)

= 2a+ 3b+ c+ 2 (in Z5)

CASE III) x = y = z : αx(x·x)(a, αxx(b, c)) = α(x·x)(x·x)(αxx(a, b), αxx(a, c))

(LHS) = αxx(a, 2b− c)
= 2a+ 3b+ c (in Z5)

(RHS) = αxx(2a− b, 2a− c)
= 2a+ 3b+ c (in Z5)

�

Using a computer programming GAP, Vendramin [14] classified connected
quandles of orders ≤ 32, The j-th quandle of order i is denoted by C[i, j].

Theorem 3.3. The quandle G15 is isomorphic to C[15, 6] = G(Z5, [0]), and
the quandle S15 is isomorphic to C[15, 5] = G(Z5, [1]).

Proof. There are 7 connected quandles of order 15 consisting of 3 Alexan-
der quandles: C[15, 1] = Z15[t]/(t + 1), C[15, 3] = Z15[t]/(t + 7), C[15, 4] =
Z15[t]/(t+13), two non-medial quasigroups C[15, 6] = G(Z5, [0]) and C[15, 5] =
G(Z5, [1]) and two non-medial, non-quasigroups C[15, 2], C[15, 7]. Furthermore
C[15, 6] = G(Z5, [0]) is involutive but C[15, 5] = G(Z5, [1]) is not. Thus the
claims are followed from the following observations (a) and (b):

(a) Non-medialty of G15 and S15: Take x = 0, y = 3, z = 1 and w = 2. Then
from TABLE 1 of G15, we have

(x ∗ y) ∗ (z ∗ w) = (0 ∗ 3) ∗ (1 ∗ 2) = 9 6= 3 = (0 ∗ 1) ∗ (3 ∗ 2) = (x ∗ z) ∗ (y ∗ w)

Likewise from TABLE 5 of S15, we have

(x ∗ y) ∗ (z ∗ w) = (0 ∗ 3) ∗ (1 ∗ 2) = 9 6= 3 = (0 ∗ 1) ∗ (3 ∗ 2) = (x ∗ z) ∗ (y ∗ w).

(b) Isomorphic invariance of types of cycles in the disjoint cyclic decomposi-
tion of a left-translation [9]: Indeed each left-translation of G15 is an involution
consisting of 7-disjoint transpositions whereas that of S15 consists of a single
10-cycle and two transpositions which are mutually disjoint. �
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