DOI QR코드

DOI QR Code

Formulation and Evaluation of Irinotecan Suppository for Rectal Administration

  • Feng, Haiyang (Colorectal Surgery, Zhejiang Cancer Hospital) ;
  • Zhu, Yuping (Colorectal Surgery, Zhejiang Cancer Hospital) ;
  • Li, Dechuan (Colorectal Surgery, Zhejiang Cancer Hospital)
  • Received : 2013.10.24
  • Accepted : 2013.12.03
  • Published : 2014.01.31

Abstract

Irinotecan suppository was prepared using the moulding method with a homogeneous blend. A sensitive and specific fluorescence method was developed and validated for the determination of irinotecan in plasma using HPLC. The pharmacokinetics of intravenous administered and rectal administered in rabbits was investigated. Following a single intravenous dose of irinotecan (50 mg/kg), the plasma irinotecan concentration demonstrated a bi-exponential decay, with a rapid decline over 15 min. $C_{max}$, $t_{1/2}$, $AUC_{0-30h}$ and $AUC_{0-{\infty}}$ were $16.1{\pm}2.7g/ml$, $7.6{\pm}1.2h$, $71.3{\pm}8.8{\mu}g{\cdot}h/ml$ and $82.3{\pm}9.5{\mu}g{\cdot}h/ml$, respectively. Following rectal administration of 100 mg/kg irinotecan, the plasma irinotecan concentration reached a peak of $5.3{\pm}2.5{\mu}g/ml$ at 4 h. The $AUC_{0-30h}$ and $AUC_{0-{\infty}}$ were $32.2{\pm}6.2{\mu}g{\cdot}h/ml$ and $41.6{\pm}7.2{\mu}g{\cdot}h/ml$, respectively. It representing ~50.6% of the absolute bioavailability.

Keywords

References

  1. Barth, S. W., Briviba, K., Watzl, B., Jager, N., Marko, D. and Esselen, M. (2010) In vivo bioassay to detect irinotecan-stabilized DNA/topoisomerase I complexes in rats. Biotechnol. J. 5, 321-327. https://doi.org/10.1002/biot.200900174
  2. Choi, H. G., Jung, J. H., Ryu, J. M., Yoon, S. J., Oh, Y. K. and Kim, C. K. (1998) Development of in-situ gelling and mucoadhesive acetaminophen liquid suppository. Int. J. Pharm. 165, 33-44. https://doi.org/10.1016/S0378-5173(97)00386-4
  3. Hind, D., Tappenden, P., Tumur, I., Eggington, S., Sutcliffe, P. and Ryan, A. (2008) The use of irinotecan, oxaliplatin and raltitrexed for the treatment of advanced colorectal cancer: systematic review and economic evaluation. Health Technol. Assess. 12, iii-ix, xi-162.
  4. Hirasawa, A., Zama, T., Akahane, T., Nomura, H., Kataoka, F., Saito, K., Okubo, K., Tominaga, E., Makita, K., Susumu, N., Kosaki, K., Tanigawara, Y. and Aoki, D. (2013) Polymorphisms in the UGT1A1 gene predict adverse effects of irinotecan in the treatment of gynecologic cancer in Japanese patients. J. Hum. Genet. 58, 825 https://doi.org/10.1038/jhg.2013.110
  5. Kanzawa, F., Koizumi, F., Koh, Y., Nakamura, T., Tatsumi, Y., Fukumoto, H., Saijo, N., Yoshioka, T. and Nishio, K. (2001) In vitro synergistic interactions between the cisplatin analogue nedaplatin and the DNA topoisomerase I inhibitor irinotecan and the mechanism of this interaction. Clin. Cancer Res. 7, 202-209.
  6. Koizumi, F., Kanzawa, F., Ueda, Y., Koh, Y., Tsukiyama, S., Taguchi, F., Tamura, T., Saijo, N. and Nishio, K. (2004) Synergistic interaction between the EGFR tyrosine kinase inhibitor gefitinib ("Iressa") and the DNA topoisomerase I inhibitor CPT-11 (irinotecan) in human colorectal cancer cells. Int. J. Cancer 108, 464-472. https://doi.org/10.1002/ijc.11539
  7. Kunimoto, T., Nitta, K., Tanaka, T., Uehara, N., Baba, H., Takeuchi, M., Yokokura, T., Sawada, S., Miyasaka, T. and Mutai, M. (1987) Antitumor activity of 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxy-camptothecin, a novel water-soluble derivative of camptothecin, against murine tumors. Cancer Res. 47, 5944-5947.
  8. Negi, L. M., Tariq, M. and Talegaonkar, S. (2013) Nano scale self-emulsifying oil based carrier system for improved oral bioavailability of camptothecin derivative by P-Glycoprotein modulation. Colloids Surf. B. Biointerfaces 111C, 346-353.
  9. Sandler, A. (2002) Irinotecan therapy for small-cell lung cancer. Oncology (Williston Park) 16, 419-425, 428, 433
  10. Sawada, S., Okajima, S., Aiyama, R., Nokata, K., Furuta, T., Yokokura, T., Sugino, E., Yamaguchi, K. and Miyasaka, T. (1991) Synthesis and antitumor activity of 20(S)-camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-ethyl-10-hydroxycamptothecin. Chem. Pharm. Bull. 39, 1446-1450. https://doi.org/10.1248/cpb.39.1446
  11. Takahashi, R., Sato, T., Klinman, D. M., Shimosato, T., Kaneko, T. and Ishigatsubo, Y. (2013) Suppressive oligodeoxynucleotides synergistically enhance antiproliferative effects of anticancer drugs in A549 human lung cancer cells. Int. J. Oncol. 42, 429-436. https://doi.org/10.3892/ijo.2012.1755
  12. Takatori, E., Shoji, T., Miura, Y., Takeuchi, S., Yoshizaki, A. and Sugiyama, T. (2013) Recurrent cervical cancer in a patient who was compound heterozygous for UGT1A1*6 and UGT1A1*28 presenting with serious adverse events during irinotecan hydrochloride/nedaplatin therapy. J. Obstet. Gynaecol. Res. 39, 1354-1358. https://doi.org/10.1111/jog.12062
  13. Tsuruo, T., Matsuzaki, T., Matsushita, M., Saito, H. and Yokokura, T. (1988) Antitumor effect of CPT-11, a new derivative of camptothecin, against pleiotropic drug-resistant tumors in vitro and in vivo. Cancer Chemother. Pharmacol. 21, 71-74.
  14. Yong, C. S., Oh, Y. K., Jung, S. H., Rhee, J. D., Kim, H. D., Kim, C. K. and Choi, H. G. (2004) Preparation of ibuprofen-loaded liquid suppository using eutectic mixture system with menthol. Eur. J. Pharm. Sci. 23, 347-353. https://doi.org/10.1016/j.ejps.2004.08.008