DOI QR코드

DOI QR Code

Methyl p-Hydroxycinnamate Suppresses Lipopolysaccharide-Induced Inflammatory Responses through Akt Phosphorylation in RAW264.7 Cells

  • Vo, Van Anh (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Lee, Jae-Won (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Shin, Seung-Yeon (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kwon, Jae-Hyun (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Lee, Hee Jae (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kim, Sung-Soo (Department of Pharmacology, College of Medicine, Kangwon National University) ;
  • Kwon, Yong-Soo (College of Pharmacy, Kangwon National University) ;
  • Chun, Wanjoo (Department of Pharmacology, College of Medicine, Kangwon National University)
  • Received : 2013.11.11
  • Accepted : 2013.12.20
  • Published : 2014.01.31

Abstract

Derivatives of caffeic acid have been reported to possess diverse pharmacological properties such as anti-inflammatory, anti-tumor, and neuroprotective effects. However, the biological activity of methyl p-hydroxycinnamate, an ester derivative of caffeic acid, has not been clearly demonstrated. This study aimed to elucidate the anti-inflammatory mechanism of methyl p-hydroxycinnamate in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Methyl p-hydroxycinnamate significantly inhibited LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$ and the protein expression of iNOS and COX-2. Methyl p-hydroxycinnamate also suppressed LPS-induced overproduction of pro-inflammatory cytokines such as IL-$1{\beta}$ and TNF-${\alpha}$. In addition, methyl p-hydroxycinnamate significantly suppressed LPS-induced degradation of $I{\kappa}B$, which retains NF-${\kappa}B$ in the cytoplasm, consequently inhibiting the transcription of pro-inflammatory genes by NF-${\kappa}B$ in the nucleus. Methyl p-hydroxycinnamate exhibited significantly increased Akt phosphorylation in a concentration-dependent manner. Furthermore, inhibition of Akt signaling pathway with wortmaninn abolished methyl p-hydroxycinnamate-induced Akt phosphorylation. Taken together, the present study clearly demonstrates that methyl p-hydroxycinnamate exhibits anti-inflammatory activity through the activation of Akt signaling pathway in LPS-stimulated RAW264.7 macrophage cells.

Keywords

References

  1. Guha, M. and Mackman, N. (2001) LPS induction of gene expression in human monocytes. Cell. Signal. 13, 85-94. https://doi.org/10.1016/S0898-6568(00)00149-2
  2. Ha, Y. M., Ham, S. A., Kim, Y. M., Lee, Y. S., Kim, H. J., Seo, H. G., Lee, J. H., Park, M. K. and Chang, K. C. (2011) ${\beta}_1$-adrenergic receptor-mediated HO-1 induction, via PI3K and p38 MAPK, by isoproterenol in RAW264.7 cells leads to inhibition of HMGB1 release in LPS-activated RAW264.7 cells and increases in survival rate of CLP-induced septic mice. Biochem. Pharmacol. 82, 769-777. https://doi.org/10.1016/j.bcp.2011.06.041
  3. Hooper, S. N., Jurgens, T., Chandler, R. F. and Stevens, M. F. G. (1984) Methyl p-coumarate: a cytotoxic constituent from Comptonia peregrina. Phytochemistry 23, 2096-2097. https://doi.org/10.1016/S0031-9422(00)84992-4
  4. Itharat, A. and Hiransai, P. (2012) Dioscoreanone suppresses LPS-induced nitric oxide production and inflammatory cytokine expression in RAW264.7 macrophages by NF-kappaB and ERK1/2 signaling transduction. J. Cell. Biochem. 113, 3427-3435. https://doi.org/10.1002/jcb.24219
  5. Jiang, W. L., Tian, J. W., Fu, F. H., Zhu, H. B. and Hou, J. (2010) Neuroprotective efficacy and therapeutic window of Forsythoside B: in a rat model of cerebral ischemia and reperfusion injury. Eur. J. Pharmacol. 640, 75-81. https://doi.org/10.1016/j.ejphar.2010.04.055
  6. Jung, W. K., Lee, D. Y., Park, C., Choi, Y. H., Choi, I., Park, S. G., Seo, S. K., Lee, S. W., Yea, S. S., Ahn, S. C., Lee, C. M., Park, W. S., Ko, J. H. and Choi, I. W. (2010) Cilostazol is anti-inflammatory in BV2 microglial cells by inactivating nuclear factor-kappaB and inhibiting mitogen-activated protein kinases. Br. J. Pharmacol. 159, 1274-1285. https://doi.org/10.1111/j.1476-5381.2009.00615.x
  7. Karin, M., Takahashi, T., Kapahi, P., Delhase, M., Chen, Y., Makris, C., Rothwarf, D., Baud, V., Natoli, G., Guido, F. and Li, N. (2001) Oxidative stress and gene expression: the AP-1 and NF-kappaB connections. Biofactors 15, 87-89. https://doi.org/10.1002/biof.5520150207
  8. Kim, Y. C. (2010) Neuroprotective phenolics in medicinal plants. Arch. Pharm. Res. 33, 1611-1632. https://doi.org/10.1007/s12272-010-1011-x
  9. Kim, Y. J., Shin, Y., Lee, K. H. and Kim, T. J. (2012) Anethum graveloens flower extracts inhibited a lipopolysaccharide-induced inflammatory response by blocking iNOS expression and NF-kappaB activity in macrophages. Biosci. Biotechnol. Biochem. 76, 1122-1127. https://doi.org/10.1271/bbb.110950
  10. Kubo, I., Nihei, K. and Tsujimoto, K. (2004) Methyl p-coumarate, a melanin formation inhibitor in B16 mouse melanoma cells. Bioorg. Med. Chem. 12, 5349-5354. https://doi.org/10.1016/j.bmc.2004.07.052
  11. Kuprash, D. V., Udalova, I. A., Turetskaya, R. L., Rice, N. R. and Nedospasov, S. A. (1995) Conserved kappa B element located down-stream of the tumor necrosis factor alpha gene: distinct NF-kappaB binding pattern and enhancer activity in LPS activated murine macrophages. Oncogene 11, 97-106.
  12. Kwon, Y. S. and Kim, C. M. (2003) Antioxidant constituents from the stem of Sorghum bicolor. Arch. Pharm. Res. 26, 535-539. https://doi.org/10.1007/BF02976877
  13. Lapchak, P. A. (2007) The phenylpropanoid micronutrient chlorogenic acid improves clinical rating scores in rabbits following multiple infarct ischemic strokes: synergism with tissue plasminogen activator. Exp. Neurol. 205, 407-413. https://doi.org/10.1016/j.expneurol.2007.02.017
  14. Lee, J. W., Bae, C. J., Choi, Y. J., Kim, S. I., Kim, N. H., Lee, H. J., Kim, S. S., Kwon, Y. S. and Chun, W. (2012) 3,4,5-Trihydroxycinnamic acid inhibits LPS-induced iNOS expression by suppressing NF-kappaB activation in BV2 microglial cells. Korean J. Physiol. Pharmacol. 16, 107-112. https://doi.org/10.4196/kjpp.2012.16.2.107
  15. Lee, J. W., Cheong, I. Y., Kim, H. S., Lee, J. J., Lee, Y. S., Kwon, Y. S., Kim, M. J., Lee, H. J., Kim, S. S. and Chun, W. (2011) Anti-inflammatory activity of 1-docosanoyl cafferate isolated from rhus verniciflua in LPS-stimulated BV2 microglial cells. Korean J. Physiol. Pharmacol. 15, 9-15. https://doi.org/10.4196/kjpp.2011.15.1.9
  16. Lee, J. W., Choi, Y. J., Park, J. H., Sim, J. Y., Kwon, Y. S., Lee, H. J., Kim, S. S. and Chun, W. (2013a) 3,4,5-Trihydroxycinnamic acid inhibits lipopolysaccharide-induced inflammatory response through the activation of Nrf2 pathway in BV2 microglial cells. Biomol. Ther. 21, 60-65. https://doi.org/10.4062/biomolther.2012.091
  17. Lee, J. W., Kim, N. H., Kim, J. Y., Park, J. H., Shin, S. Y., Kwon, Y. S., Lee, H. J., Kim, S. S. and Chun, W. (2013b) Aromadendrin inhibits lipopolysaccharide-induced nuclear translocation of NF-kB and phosphorylation of JNK in RAW264.7 macrophage cells. Biomol. Ther. 21, 216-221. https://doi.org/10.4062/biomolther.2013.023
  18. Lee, M., Lee, H. H., Lee, J. K., Ye, S. K., Kim, S. H. and Sung, S. H. (2013c) Anti-adipogenic activity of compounds isolated from Idesia polycarpa on 3T3-L1 cells. Bioorg. Med. Chem. Lett. 23, 3170-3174. https://doi.org/10.1016/j.bmcl.2013.04.011
  19. Lee, Y., Shin, D. H., Kim, J. H., Hong, S., Choi, D., Kim, Y. J., Kwak, M. K. and Jung, Y. (2010) Caffeic acid phenethyl ester-mediated Nrf2 activation and IkappaB kinase inhibition are involved in NFkappaB inhibitory effect: structural analysis for NFkappaB inhibition. Eur. J. Pharmacol. 643, 21-28. https://doi.org/10.1016/j.ejphar.2010.06.016
  20. Li, Q. and Verma, I. M. (2002) NF-kappaB regulation in the immune system. Nat. Rev. Immunol. 2, 725-734. https://doi.org/10.1038/nri910
  21. Maneerat, W., Phakhodee, W., Ritthiwigrom, T., Cheenpracha, S., Deachathai, S. and Laphookhieo, S. (2013) Phenylpropanoid derivatives from Clausena harmandiana fruits. Phytochem. Lett. 6, 18-20. https://doi.org/10.1016/j.phytol.2012.10.006
  22. Moon, D. O., Park, S. Y., Lee, K. J., Heo, M. S., Kim, K. C., Kim, M. O., Lee, J. D., Choi, Y. H. and Kim, G. Y. (2007) Bee venom and melittin reduce proinflammatory mediators in lipopolysaccharide-stimulated BV2 microglia. Int. Immunopharmacol. 7, 1092-1101. https://doi.org/10.1016/j.intimp.2007.04.005
  23. Nagasaka, R., Chotimarkorn, C., Shafiqul, I. M., Hori, M., Ozaki, H. and Ushio, H. (2007) Anti-inflammatory effects of hydroxycinnamic acid derivatives. Biochem. Biophys. Res. Commun. 358, 615-619. https://doi.org/10.1016/j.bbrc.2007.04.178
  24. O'Connell, M. A., Bennett, B. L., Mercurio, F., Manning, A. M. and Mackman, N. (1998) Role of IKK1 and IKK2 in lipopolysaccharide signaling in human monocytic cells. J. Biol. Chem. 273, 30410-30414. https://doi.org/10.1074/jbc.273.46.30410
  25. Ock, J., Kim, S. and Suk, K. (2009) Anti-inflammatory effects of a fluorovinyloxyacetamide compound KT-15087 in microglia cells. Pharmacol. Res. 59, 414-422. https://doi.org/10.1016/j.phrs.2009.02.008
  26. Rehman, M. U., Yoshihisa, Y., Miyamoto, Y. and Shimizu, T. (2012) The anti-inflammatory effects of platinum nanoparticles on the lipopolysaccharide-induced inflammatory response in RAW264.7 macrophages. Inflamm. Res. 61, 1177-1185. https://doi.org/10.1007/s00011-012-0512-0
  27. Rietschel, E. T. and Brade, H. (1992) Bacterial endotoxins. Sci. Am. 267, 54-61.
  28. Saleem, M., Akhtar, N., Riaz, N., Ali, M. S. and Jabbar, A. (2011) Isolation and characterization of secondary metabolites from Plumeria obtusa. J. Asian. Nat. Prod. Res. 13, 1122-1127. https://doi.org/10.1080/10286020.2011.618452
  29. Siebenlist, U., Franzoso, G. and Brown, K. (1994) Structure, regulation and function of NF-kappa B. Annu. Rev. Cell Biol. 10, 405-455. https://doi.org/10.1146/annurev.cb.10.110194.002201
  30. Steinbrecher, T., Hrenn, A., Dormann, K. L., Merfort, I. and Labahn, A. (2008) Bornyl (3,4,5-trihydroxy)-cinnamate--an optimized human neutrophil elastase inhibitor designed by free energy calculations. Bioorg. Med. Chem. 16, 2385-2390. https://doi.org/10.1016/j.bmc.2007.11.070
  31. Sweet, M. J. and Hume, D. A. (1996) Endotoxin signal transduction in macrophages. J. Leukoc. Biol. 60, 8-26. https://doi.org/10.1002/jlb.60.1.8
  32. Vo, V. A., Lee, J. W., Chang, J. E., Kim, J. Y., Kim, N. H., Lee, H. J., Kim, S. S., Chun, W. and Kwon, Y. S. (2012) Avicularin inhibits lipopolysaccharide-induced inflammatory response by suppressing ERK phosphorylation in RAW264.7 macrophages. Biomol. Ther. 20, 532-537. https://doi.org/10.4062/biomolther.2012.20.6.532
  33. Wei, X., Ma, Z., Fontanilla, C. V., Zhao, L., Xu, Z. C., Taggliabraci, V., Johnstone, B. H., Dodel, R. C., Farlow, M. R. and Du, Y. (2008) Caffeic acid phenethyl ester prevents cerebellar granule neurons (CGNs) against glutamate-induced neurotoxicity. Neuroscience 155, 1098-1105. https://doi.org/10.1016/j.neuroscience.2008.06.056
  34. Zheng, L. T., Ock, J., Kwon, B. M. and Suk, K. (2008a) Suppressive effects of flavonoid fisetin on lipopolysaccharide-induced microglial activation and neurotoxicity. Int. Immunopharmacol. 8, 484-494. https://doi.org/10.1016/j.intimp.2007.12.012
  35. Zheng, L. T., Ryu, G. M., Kwon, B. M., Lee, W. H. and Suk, K. (2008b) Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur. J. Pharmacol. 588, 106-113. https://doi.org/10.1016/j.ejphar.2008.04.035

Cited by

  1. Anti-Inflammatory Potential of Ethyl Acetate Fraction of Moringa oleifera in Downregulating the NF-κB Signaling Pathway in Lipopolysaccharide-Stimulated Macrophages vol.21, pp.12, 2016, https://doi.org/10.3390/molecules21111452
  2. N-(p-Coumaryol)-Tryptamine Suppresses the Activation of JNK/c-Jun Signaling Pathway in LPS-Challenged RAW264.7 Cells vol.22, pp.3, 2014, https://doi.org/10.4062/biomolther.2014.013
  3. Anti-Allergic Effect of Oroxylin A from Oroxylum indicum Using in vivo and in vitro Experiments vol.24, pp.3, 2016, https://doi.org/10.4062/biomolther.2016.071
  4. Apocynin Suppresses Lipopolysaccharide-Induced Inflammatory Responses Through the Inhibition of MAP Kinase Signaling Pathway in RAW264.7 Cells vol.77, pp.6, 2016, https://doi.org/10.1002/ddr.21321
  5. Anti-allergic effect of α-cubebenoate isolated from Schisandra chinensis using in vivo and in vitro experiments vol.173, 2015, https://doi.org/10.1016/j.jep.2015.07.049
  6. Sphingosine 1-phosphate induced anti-atherogenic and atheroprotective M2 macrophage polarization through IL-4 vol.26, pp.10, 2014, https://doi.org/10.1016/j.cellsig.2014.07.009
  7. A Steroidal Saponin RCE-4 Inhibits Lipopolysaccharide-Stimulated Inflammatory Responses via Blocking PI3K/Akt-Mediated Nf-κB Activation in RAW264.7 Cells vol.568-570, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.568-570.1901
  8. Selenium Pretreatment Alleviated LPS-Induced Immunological Stress Via Upregulation of Several Selenoprotein Encoding Genes in Murine RAW264.7 Cells pp.1559-0720, 2018, https://doi.org/10.1007/s12011-018-1333-y
  9. Theoretical Insights Into the Depolymerization Mechanism of Lignin to Methyl p-hydroxycinnamate by [Bmim][FeCl4] Ionic Liquid vol.7, pp.None, 2014, https://doi.org/10.3389/fchem.2019.00446
  10. Synthesis and Antiplatelet Activites of Some Derivatives of p-Coumaric Acid vol.13, pp.3, 2014, https://doi.org/10.23939/chcht13.03.296
  11. Insights for the Valorization of Biomass from Portuguese Invasive Acacia spp. in a Biorefinery Perspective vol.11, pp.12, 2014, https://doi.org/10.3390/f11121342
  12. Plant Secondary Metabolites with an Overview of Populus vol.22, pp.13, 2014, https://doi.org/10.3390/ijms22136890
  13. Methyl p‑hydroxycinnamate exerts anti‑inflammatory effects in mouse models of lipopolysaccharide‑induced ARDS vol.25, pp.1, 2014, https://doi.org/10.3892/mmr.2021.12553
  14. Isolation of tyrosine derived phenolics and their possible beneficial role in anti-inflammatory and antioxidant potential of Tithonia tubaeformis vol.35, pp.22, 2014, https://doi.org/10.1080/14786419.2019.1705813