DOI QR코드

DOI QR Code

Reaction Rate Analysis of Combustion for Indonesian Coal Char Applied by External/Internal Diffusion

외부 및 내부 확산을 적용한 인도네시아 석탄촤의 연소 반응율 분석

  • Hwang, Chan-Won (Energy Conversion System Lab./Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Kim, Ryang-Gyoon (Energy Conversion System Lab./Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Ryu, Kwang-Il (Energy Conversion System Lab./Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Wu, Ze-Lin (Energy Conversion System Lab./Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University) ;
  • Jeon, Chung-Hwan (Energy Conversion System Lab./Pusan Clean Coal Center, Department of Mechanical Engineering, Pusan National University)
  • 황찬원 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 김량균 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 류광일 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 오택림 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터) ;
  • 전충환 (부산대학교 기계공학부 에너지변환시스템연구실/화력발전에너지 분석기술센터)
  • Received : 2013.09.30
  • Accepted : 2013.11.29
  • Published : 2014.02.01

Abstract

The experiment was designed to compare the char combustion kinetics of pulverized Indonesia coals commonly utilized in Korea power plants. The reaction rate of coal char has been formulated using the external and internal effectiveness factors to describe the diffusion effect quantitatively. The Random Pore Model (RPM) was used for applying internal specific surface area as a function of carbon conversion ratio. Reaction rate was obtained from reaction time using the Wire Heating Reactor (WHR) which can heat and measure the char particle temperature at the same time. BET and TGA were used to obtain physical properties such as internal specific surface area and structural parameter. Three kinds of Indonesia Sub-bituminous coals "BARAMULTI, ENERGYMAN, AGM" were used in order to derive the activation energy and pre-exponential factor. The results of this study showed that the effect of internal diffusion than that of external diffusion is the dominant as comparison of kinetics was reflected in external and internal effectiveness factors. For three kinds of coal char, finally, activation energy of intrinsic kinetics indicates 110~118 kJ/mol.

본 연구의 목적은 국내 화력발전소에서 사용중인 인도네시아 석탄촤의 연소반응율을 연구하는 것이다. 석탄촤의 반응율은 External, Internal effectiveness factor를 고려하여 입자 내부 및 외부확산을 정량적으로 정리하였으며, Random pore model을 사용하여 탄소변환율에 따른 입자내부비표면적의 변화를 반영하였다. 가열 및 측정이 가능한 WHR(Wire Heating Reactor)를 활용하여 반응시간을 측정함으로써 석탄촤의 반응율을 도출하였고 BET(Brunauer-Emmett-Teller) 및 TGA(Thermo-Gravimetric Analysis) 장비를 활용하여 석탄촤의 물리적인 특성인 내부비표면적과 Random pore model의 구조변수(${\Psi}$)를 측정하였다. 석탄 종에 따른 활성화에너지 및 빈도인자를 도출하기 위해 아역청탄인 BARAMULTI, ENERGYMAN, AGM탄을 사용하였다. 본 연구 결과에서 External, Internal effectiveness factors를 통해 확산에 따른 kinetics를 비교한 결과 외부 확산 보다 내부 확산의 영향이 지배적임을 확인하였다. 최종적으로 내부 및 외부 확산에 대한 영향을 고려한 3종의 석탄촤 Intrinsic kinetics의 활성화에너지는 110~118 kJ/mol의 값을 보였다.

Keywords

References

  1. Kim, Y. G., Kim, J. D., Kim, G. B., Song, J. H. and Jeon, C. H., "An Experimental Investigation of the Effect of Particle Size on the Combustion Characteristics of Pulverized Sub-bituminous Coal with Low Calorific Value by Using an LFR System," KSME(B), 34(3), 259-267(2010). https://doi.org/10.3795/KSME-B.2010.34.3.259
  2. Kim, R. G., Song, J. H., Lee, B. H., Chang, Y. J. and Jeon, C. H., "Application of a DAEM Method for a Comparison of Devolatilization Kinetics of Imported Coals," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 48(1), 110-115(2010).
  3. Ryu, K. I., Kim, R. G., Li, D. F., Wu, Z. L. and Jeon, C. H., "Thermal Behavior and Kinetics of Coal Blends during Devolatilization," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(1), 121-126 (2013). https://doi.org/10.9713/kcer.2013.51.1.121
  4. Lee, B. H., Song, J. H., Lee, C. S., Chang, Y. J. and Jeon, C. H., "Effect of Coal Properties on Combustion Characteristics in a Pulverized Coal Fired Furnace," KSME(B), 33(10), 737-747(2009). https://doi.org/10.3795/KSME-B.2009.33.10.737
  5. Lee, B. H., Song, J. H., Kang, K. T., Chang, Y. J. and Jeon, C. H., "Determination of Char Oxidation Rates with Different Analyical Methods," KSME(B), 33(11), 876-885(2009).
  6. Tomeczek, J., "Coal Combustion," Malabar, FL, Krieger Publishing Company(1994).
  7. Kwon, J. S., Kim, R. G., Song, J. H., Chang, Y. J. and Jeon, C. H., "A Study on Char Oxidation Kinetics by Direct Measurement of Coal Ignition Temperature," J. Energy Eng., 20(4), 346-352 (2011). https://doi.org/10.5855/ENERGY.2011.20.4.346
  8. Xuzhong, G., Zhancheng, G. and Zhi, W., "Reactivity of Pulverized Coals during Combustion Catalyzed by $CeO_2$ and $Fe_2O_3$," Combust. Flame, 157, 351-356(2010). https://doi.org/10.1016/j.combustflame.2009.06.025
  9. Normand, M. L., "Heterogeneous Kinetics of Coal Char Gasification and Combustion," Prog. Energy Combust. Sci., 4(4), 221-270(1978). https://doi.org/10.1016/0360-1285(78)90008-4
  10. Rodjeen, S., Mekasut, L., Kuchontara, P. and Piumsomboon, P., "Parametric Studies on Catalytic Pyrolysis of Coal-biomass Mixture in a Circulating Fluidized Bed," Korean J. Chem. Eng., 23(2), 216-223(2006). https://doi.org/10.1007/BF02705719
  11. Kalyan, A. and Ishwar, K. P., "Combustion Science and Engineering," CRC Press/Taylor&Francis(1959).
  12. Mittchell, R. E., "On the Products of the Heterogeneous Oxidation Reaction at the Surfaces of Burning Coal Char Particles," Twenty-Second Symposium(International) on Combustion Combust. Inst., 69-78(1988).
  13. Williams, A., Pourkashanian, M. and Jones, J. M., "The Combustion of Coal and Some Other Solid Fuels," Combustion Institute, 28, 2141-2162(2000). https://doi.org/10.1016/S0082-0784(00)80624-4
  14. Williams, A., Backreedy, R., Habib, R., Jones, J. M. and Pourkashanian, M., "Modelling Coal Combustion: The Current Position," Fuel, 81, 605-618(2002). https://doi.org/10.1016/S0016-2361(01)00158-2
  15. Smith, I. W., "The Combustion Rates of Coal Chars: A Review," 19th Symposium(International) on Combustion Combust. Inst., 1045-1065(1982).
  16. Baum, M. M. and Street, P. J., "Predicting the Combustion Behavior of Coal Particles," Combust. Sci. Tech., 3(5), 231-243(1971). https://doi.org/10.1080/00102207108952290
  17. Field, M. A., "Rate of Combustion Of Size-Graded Fractions of Char from a Low Rank Coal between 1200 K-2000 K," Combust. Flame, 13, 237-252(1969). https://doi.org/10.1016/0010-2180(69)90002-9
  18. Mitchell R. E., "An Intrinsic Kinetics-based, Particle-population Balance Model for Char Oxidation during Pulverized Coal Combustion," Combustion Institute, 28, 2261-2270(2000). https://doi.org/10.1016/S0082-0784(00)80636-0
  19. Monaghan, R. F. D. and Ghoniem, A. F., "A Dynamic Reduced Order Model for Simulating Entrained Flow Gasifiers Part I: Model Development and Description," Fuel, 91, 61-80(2012). https://doi.org/10.1016/j.fuel.2011.07.015
  20. Liu, G. S., Tate, A. G., Bryant, G. W. and Wall, T. F., "Mathematical Modeling of Coal Char Reactivity with $CO_2$ at High Pressures and Temperatures," Fuel, 79, 1145-1154(2000). https://doi.org/10.1016/S0016-2361(99)00274-4
  21. Stephen, R. T., "An Introduction to Combustion," McGraw-Hill Book Co.(2000).
  22. Tomeczek, J. and Wojcik, J., "A Method of Direct Measurement of Solid Fuel Particle Ignition Temperature," Twenty-third Symposium(International) on Combustion Combust. Inst., 1163-1167(1990).

Cited by

  1. Gasification for Indonesian Coal Char at High Temperature and Elevated Pressure vol.38, pp.9, 2014, https://doi.org/10.3795/KSME-B.2014.38.9.781
  2. Sensitivity test of low rank Indonesian coal utilization using steady state and dynamic simulations of entrained-type gasifier vol.102, pp.None, 2016, https://doi.org/10.1016/j.applthermaleng.2016.04.040