DOI QR코드

DOI QR Code

Pretreatment of Kenaf Core by Combined Electron Beam Irradiation and Water Steam for Enhanced Hydrolysis

향상된 가수분해율을 얻기 위한 전자선 조사와 물찜의 복합 전처리공정을 이용한 케냐프 코어 전처리

  • Lee, Jin-Young (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Lee, Byoung-Min (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Jeun, Joon-Pyo (Research Division for Industry & Environment, Korea Atomic Energy Research Institute) ;
  • Kang, Phil-Hyun (Research Division for Industry & Environment, Korea Atomic Energy Research Institute)
  • 이진영 (한국원자력연구원 공업환경연구부) ;
  • 이병민 (한국원자력연구원 공업환경연구부) ;
  • 전준표 (한국원자력연구원 공업환경연구부) ;
  • 강필현 (한국원자력연구원 공업환경연구부)
  • Received : 2013.08.12
  • Accepted : 2013.11.07
  • Published : 2014.02.01

Abstract

We have investigated the combined pretreatment of electron beam irradiation (EBI) and water steam as a kenaf core pretreatment process. After each sample was exposed to electron beam dose ranging from 50 to 1,000 kGy, the irradiated sample was treated by water steam using an autoclave for 5-h at $120^{\circ}C$. The pretreated samples were characterized using FTIR-ATR and XRD. FTIR spectra and XRD analysis of nonpretreated and pretreated samples confirm that crystallinity changes were observed before and after the pretreatment. The crystallinity index (CrI) was increased from 50.6% for nonpretreated sample 55.0% for 500 kGy exposed sample. And then, we analyzed sugar yield that is the amount of produced mono-saccharides in pretreated sample by enzymatic hydrolysis; an enzyme activity rate was 70 FPU/mL and 40 CBU/mL, and the loading time was 24, 48 and 72-h. The highest sugar yield was 83.9% at 500 kGy after 72-h for enzymatic hydrolysis. The sugar yield of enzymatic hydrolysis for pretreatment samples was increased as doses are subsequently changed to 100, 200 and 300 kGy, allowing to give 50.8%, 58.6% and 67.9%, respectively.

케냐프 코어 전처리를 위하여 전자선 조사와 물찜이 결합된 복합 전처리공정에 대해 연구하였다. 각 시료는 50에서 1,000 kGy까지의 선량으로 조사한 후, 오토클레이브를 이용하여 $120^{\circ}C$에서 5시간 동안 물찜처리를 하였다. 적외선 분광기와 X선 회절 분석기를 사용하여 전처리 되지 않은 시료와 전처리된 시료의 분자 구조와 결정도 변화를 분석하였다. 전처리 되지 않은 시료의 결정화도 지수는 50.6%에서 500 kGy 조사된 시료는 55.0%로 증가함을 알 수 있었다. 그 다음, 전처리된 시료에 비활성도 70 FPU/mL, 40 CBU/mL의 효소를 주입하여 생산된 단당류 총합으로 당화율을 구하였다. 이 때 효소 가수분해 시간은 24, 48, 72시간으로 하였다. 500 kGy로 조사된 시료의 72 시간 가수분해 후 당화율은 83.9%로 가장 높게 나타났고, 전처리된 시료의 당화율은 조사량 증가에 따라 100 kGy에서 50.8%, 200 kGy에서 58.6%, 300 kGy에서 67.9%로 각각 증가하였다.

Keywords

References

  1. Shrestha, R. K., Hur, O. S. and Kim, T. H., "Pretreatment of Corn Stover for Improved Enzymatic Saccharification Using Ammonia Circulation Reactor (ACR)," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 335-341(2013). https://doi.org/10.9713/kcer.2013.51.3.335
  2. Knauf, M. and Moniruzzaman, M., "Lignocellulosic Biomass Processing," Persp. Int. Sugar J., 106, 147-150(2004).
  3. Ebringerova, A., Hromadkova, Z. and Heinze, T., "Hemicellulose," Adv. Polym. Sci., 186, 1-67(2005). https://doi.org/10.1007/b136816
  4. Sanchez, O. J. and Cardona, C. A., "Trends in Biotechnological Production of Fuel Ethanol from Different Feedstocks," Bioresour. Technol., 99, 5270-5295(2008). https://doi.org/10.1016/j.biortech.2007.11.013
  5. Zhu, Y. J., Pan, X. J., Wang, G. S. and Gleisner, R., "Sulfite Pretreatment (SPORL) for Robust Enzymatic Saccharification of Spruce and Red Pine," Bioresour. Technol., 100, 2411-2418(2009). https://doi.org/10.1016/j.biortech.2008.10.057
  6. Zheng, Y., Pan, Z. and Zhang, R., "Overview of Biomass Pretreatment for Cellulosic Ethanol Production," Int. J. Agric. Biol. Eng., 2, 51-68(2009).
  7. Guo, B., Zhang, Y., Ha, S. J., Jin, Y. S. and Morgenroth, E., "Combined Biomimetic and Inorganic Acids Hydrolysis of Hemicellulose in Miscanthus for Bioethanol Production," Bioresour. Technol., 110, 278-287(2012). https://doi.org/10.1016/j.biortech.2012.01.133
  8. Carter, B., Squillace, P., Gilcrease, P. and Menkhaus, T. J., "Detoxification of Lignocellulosic Biomass Slurry by Soluble Polyelectrolyte Adsorption for Improved Fermentation Efficiency," Biotechnol. Bioeng., 108, 2053-2060(2011). https://doi.org/10.1002/bit.23152
  9. Limayem, A. and Ricke, S. C., "Lignocellulosic Biomass for Bioethanol Production-Current Perspectives, Potential Issues and Future Prospects," Prog. Energy Combust. Sci., 38, 449-467(2012). https://doi.org/10.1016/j.pecs.2012.03.002
  10. Binod, P., Sindhu, R., Singhania, R. R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R. K. and Pandey, A., "Bioethanol Production from Rice Straw: An Overview," Bioresour. Technol., 101, 4767-4774(2010). https://doi.org/10.1016/j.biortech.2009.10.079
  11. Menon, V. and Rao, M., "Trends in Bioconversion of Lignocellulose: Biofuels, Platform Chemicals," Prog. Energy Combust. Sci., 38, 522-550(2012). https://doi.org/10.1016/j.pecs.2012.02.002
  12. Kim, T. H., "Sequential Hydrolysis of Hemicellulose and Lignin in Lignocellulosic Biomass by Two-stage Percolation Process Using Dilute Sulfuric and Ammonium Hydrolxide," Korean J. Chem. Eng., 28, 2156-2162(2011). https://doi.org/10.1007/s11814-011-0093-6
  13. Khan, A. W., "Effect of Electron-beam Irradiation Pretreatment on the Enzymatic Hydrolysis of Softwood," Biotechnol. Bioeng., 28, 1449-1453(1986). https://doi.org/10.1002/bit.260280921
  14. Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G. and Kim, K. H., "Improved Enzymatic Hydrolysis Yield of Rice Straw Using Electron Beam Irradiation Pretreatment," Bioresour. Technol., 100, 1285-1290(2009). https://doi.org/10.1016/j.biortech.2008.09.010
  15. Driscoll, M., Stipanovic, A., Winter, W., Kun, C., Manning, M. and Jesica, S., "Electron Beam Irradiation of Cellulose," Radiat. Phys. Chem., 78, 539-542(2009). https://doi.org/10.1016/j.radphyschem.2009.03.080
  16. Alvira, P., Toms-Pej, E., Ballesteros, M. and Negro, M. J., "Pretreatment Technologies for An Efficient Bioethanol Production Process Based on Enzymatic Hydrolysis: A Review," Bioresour. Technol., 101, 4851-4861(2010). https://doi.org/10.1016/j.biortech.2009.11.093
  17. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M. and Ladisch, M., "Features of Promising Technologies for Pretreatment of Lignocellulosic Biomass," Bioresour. Technol., 96, 673-686(2005). https://doi.org/10.1016/j.biortech.2004.06.025
  18. Liu, S. J., "Woody Biomass: Niche Position as a Source of Sustainable Renewable Chemicals and Energy and Kinetics of Hot-water Extraction/hydrolysis," Biotechnol. Adv., 28, 563-582(2010). https://doi.org/10.1016/j.biotechadv.2010.05.006
  19. Shin, S. J. and Sung, Y. J., "Improving Hydrolysis of Industrial Hemp (Cannabis sativa L.) by Electron Beam Irradiation," Radiat. Phys. Chem., 77, 1034-1038(2008). https://doi.org/10.1016/j.radphyschem.2008.05.047
  20. Chosdu, R., Hilmy, N., Erizal, Erlinda, T. B. and Abbas, B., "Radiation and Chemical Pretreatment of Cellulosic Waste," Radiat. Phys. Chem., 42, 695-698(1993). https://doi.org/10.1016/0969-806X(93)90354-W
  21. Ozturk, I., Irmak, S., Hesenov, A. and Erbatur, O., Hydrolysis of Kenaf (Hibiscus cannabinus L.) Stems by Catalytical Thermal Treatment in Subcritical Water," Biomass Bioenerg., 34, 1578-1585(2010). https://doi.org/10.1016/j.biombioe.2010.06.005
  22. Badal, C. S., Tsuyoshi, Y., Michael, A. C. and Kenji, S., "Hydrothermal Pretreatment and Enzymatic Saccharification of Corn Stover for Efficient Ethanol Production", Ind. Crop. Prod., 44, 367-372(2013). https://doi.org/10.1016/j.indcrop.2012.11.025
  23. Lawther, J. M., Sun, R. and Banks, W. B., "Effect of Steam Treatment on the Chemical Composition of Wheat Straw," Holzforschung, 50, 365-371(1996). https://doi.org/10.1515/hfsg.1996.50.4.365
  24. Selig, M., Weiss, N. and Ji, Y., "Enzymatic Saccharification of Lignocellulosic Biomass: Laboratory Analytical Procedure(LAP)," National Renewable Energy Laboratory, Golden, CO, USA(2008).
  25. Kim, J. S., "The Characteristics of Alkaline Pretreatment Methods of Cellulosic Biomass," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51, 303-307(2013). https://doi.org/10.9713/kcer.2013.51.3.303
  26. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D. and Crocker, D., "Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP)," National Renewable Energy Laboratory, Golden, CO, USA(2008).
  27. Thygesen, A., Oddershede, J., Lilholt, H., Thomsen, A. and Stahl, K., "On the Determination of Crystallinity and Cellulose Content in Plant Fibres," Cellulose content in plant fiber. Cellulose, 12, 563-576(2005). https://doi.org/10.1007/s10570-005-9001-8
  28. Hong, S., Tahir, P., Mohamad, R., Abdullah, L., Choo, A. and Liong, Y. Y., "Effect of Pretreatment Process on Bioconversion of Kenaf (Hibiscus cannabinus L.) Core to Glucose," Bioresources, 8, 2010-2017(2013).
  29. Okuda, N., Hori, K., Sato, M., Chemical changes of kenaf core binderless boards during hot pressing (II): effects on the binderless board properties. J. Wood Sci., 52, 249-254(2006). https://doi.org/10.1007/s10086-005-0744-5
  30. Kumar, P., Diane M. B., Michael J. D. and Stroeve, P., "Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production," Ind. Eng. Chem. Res., 48, 3713-3729(2009). https://doi.org/10.1021/ie801542g
  31. Hu, F. and Ragauskas, A., "Pretreatment and Lignocellulosic Chemistry," Bioenerg. Res., 5, 1043-1066(2012). https://doi.org/10.1007/s12155-012-9208-0
  32. Kumar, R., Mago, G., Balan, V. and Wyman C. E., "Physical and Chemical Characterization of Corn Stover and Polar Solids Resulting From Leading Pretreatment Technologies," Bioresour. Technol., 100, 3948-3962(2009). https://doi.org/10.1016/j.biortech.2009.01.075
  33. Xiao, B., Sun, X. F. and Sun, R. C., "Chemical, Structural, and Thermal Characterizations of Alkali-soluble Lignins and Hemicelluloses, and Cellulose from Maize Stems, Rye Straw, and Rice Straw," Polym. Degrad. Stabil., 74, 307-319(2001). https://doi.org/10.1016/S0141-3910(01)00163-X
  34. Hsu, T. C., Guo, G. L., Chen, W. H. and Hwang, W. S., "Effect of Dilute Acid Pretreatment of Rice Straw on Structural Properties and Enzymatic Hydrolysis," Bioresour. Technol., 101, 4907-4913(2010). https://doi.org/10.1016/j.biortech.2009.10.009
  35. Chundawat, P. S. S., Venkatesh, B. and Dale, B. E., "Effect of Particle Size Based Separation of Milled Corn Stover on AFEX Pretreatment and Enzymatic Digestibility," Appl. Biochem. Biotechnol., 96, 219-231(2006).
  36. Chabannes, M., "In situ Analysis of Lignins in Transgenic Tobacco Reveals a Differential Impact of Individual Transformations on the Spatial Patterns of Lignin Deposition at the Cellular and Subcellular Levels," Plant J., 28, 271-282(2001). https://doi.org/10.1046/j.1365-313X.2001.01159.x
  37. Minu, K., Jiby, K. K. and Kishore, V. V. N., "Isolation and Purification of Lignin and Silica from the Black Liquor Generated During the Production of Bioethanol from Rice Straw," Biomass Bioenerg., 39, 210-217(2012). https://doi.org/10.1016/j.biombioe.2012.01.007
  38. Zhao, X. B., Wang, L. and Liu, D. H., "Peracetic Acid Pretreatment of Sugarcane Bagasse for Enzymatic Hydrolysis: A Continued Work," J. Chem. Technol. Biotechnol., 83, 950-956(2008). https://doi.org/10.1002/jctb.1889
  39. Kumakura, M. and Kaetsu, I., "Effect of Electron Beam Currenton Radiation Pretreatment of Cellulosic Wastes with Electron Beam Accelerator," Radiat. Phys. Chem., 23, 523-527(1984). https://doi.org/10.1016/0146-5724(84)90154-7
  40. Gumuskaya, E., Usta, M. and Krici, H., "The Effects of Various Pulping Conditions on Crystalline Structure of Cellulose in Cotton Linters," Polym. Degrad. Stabil., 81, 559-564(2003). https://doi.org/10.1016/S0141-3910(03)00157-5
  41. Chen, W. H., Ye, S. C. and Sheen, H. K., "Hydrolysis Characteristics of Sugarcane Bagasse Pretreated by Dilute Acid Solution in a Microwave Irradiation Environment," Appl. Energ., 93, 237-244(2012). https://doi.org/10.1016/j.apenergy.2011.12.014
  42. Saha, B. C., Yoshidaa, T., Cotta, M. A. and Sonomoto, K., "Hydrothermal Pretreatment and Enzymatic Saccharification of Corn Stover for Efficient Ethanol Production," Ind. Crop. Prod., 44, 367-372(2013). https://doi.org/10.1016/j.indcrop.2012.11.025
  43. Karthika, K., Arun, A. B. and Rekha, P. D., "Enzymatic Hydrolysis and Characterization of Lignocellulosic Biomass Exposed to Electron Beam Irradiation," Carbohydr. polym., 90, 1038-1045 (2012). https://doi.org/10.1016/j.carbpol.2012.06.040
  44. Wang, W., Yuan, T., Wang, K., Cui, B. and Dai, Y., "Combination of Biological Pretreatment with Liquid Hot Water Pretreatment to Enhance Enzymatic Hydrolysis of Populus Tomentosa," Bioresour. Technol., 107, 282-286(2012). https://doi.org/10.1016/j.biortech.2011.12.116

Cited by

  1. Prospects for Irradiation in Cellulosic Ethanol Production vol.2015, pp.2090-3146, 2015, https://doi.org/10.1155/2015/157139
  2. NaOH를 이용한 우드칩의 당화 전처리에 대한 감마선 조사 영향 연구 vol.54, pp.3, 2014, https://doi.org/10.9713/kcer.2016.54.3.431
  3. Chemical Imaging of Fine Mode Atmospheric Particles Collected from a Research Aircraft over Agricultural Fields vol.4, pp.11, 2014, https://doi.org/10.1021/acsearthspacechem.0c00172