DOI QR코드

DOI QR Code

Electrochemical Synthesis of Ammonia from Water and Nitrogen using a Pt/GDC/Pt Cell

Pt/GDC/Pt 셀을 이용한 물과 질소로부터 전기화학적 암모니아 합성

  • Jeoung, Hana (Department of Chemical and Biochemical Engineering, Konyang University) ;
  • Kim, Jong Nam (Department of Clean Fuel, Korea Institute of Energy Research) ;
  • Yoo, Chung-Yul (Department of Clean Fuel, Korea Institute of Energy Research) ;
  • Joo, Jong Hoon (Department of Clean Fuel, Korea Institute of Energy Research) ;
  • Yu, Ji Haeng (Department of Clean Fuel, Korea Institute of Energy Research) ;
  • Song, Ki Chang (Department of Chemical and Biochemical Engineering, Konyang University) ;
  • Sharma, Monika (Department of Clean Fuel, Korea Institute of Energy Research) ;
  • Yoon, Hyung Chul (Department of Clean Fuel, Korea Institute of Energy Research)
  • Received : 2013.09.13
  • Accepted : 2013.11.12
  • Published : 2014.02.01

Abstract

Electrochemical ammonia synthesis from water and nitrogen using a Pt/GDC/Pt cell was experimentally investigated. Electrochemical analysis and ammonia synthesis in the moisture-saturated nitrogen environment were performed under the operating temperature range $400{\sim}600^{\circ}C$ and the applied potential range OCV (Open Circuit Voltage)-1.2V. Even though the ammonia synthesis rate was augmented with the increase in the operating temperature (i.e. increase in the applied current) under the constant potential, the faradaic efficiency was decreased because of the limitation of dissociative chemisorption of nitrogen on the Pt electrode. The maximum synthesis rate of ammonia was $3.67{\times}10^{-11}mols^{-1}cm^{-2}$ with 0.1% faradaic efficiency at $600^{\circ}C$.

본 연구에서는 Pt/GDC/Pt 셀을 이용하여 상압에서 물과 질소로부터 전기화학적으로 암모니아를 합성하는 연구를 수행하였다. 수분이 포화된 질소분위기에서 작동온도($400{\sim}600^{\circ}C$)와 전압(OCV(Open Circuit Voltage)~1.2 V)에 대한 전기화학적 특성 평가를 수행하였고, 암모니아 합성량을 정량 분석하였다. 정전압 하에서 작동온도의 증가에 따라 인가 전류의 증가로 암모니아 합성량은 증가하였으나, Pt 전극에서 암모니아 합성에 필요한 질소의 화학적 해리 흡착 반응의 한계로 패러데이 효율(faradaic efficiency)은 감소하였다. $600^{\circ}C$에서 최대 암모니아 합성량인 $3.67{\times}10^{-11}mols^{-1}cm^{-2}$(6.7 mA) 얻었고 패러데이 효율은 0.1%이다.

Keywords

References

  1. Amar, I. A., Lan, R., Petit, C. T. G. and Tao, S., "Solid-state Electrochemical Synthesis of Ammonia: a Review," J. Solid State Electrochem, 15, 1845-1860(2011). https://doi.org/10.1007/s10008-011-1376-x
  2. Lan, R., Irvine, T. S. and Tao, S., "Ammonia and Related Chemicals as Potential Indirect Hydrogen Storage Materials," Int. J. Hydrog. Energy, 37, 1482-1494(2008).
  3. Klerke, A., Christensen, C. H., Norskov, J. K. and Vegge, T., "Ammonia for Hydrogen Storage: Challenges and Opportunities," J. Mater Chem, 18, 2304-2310(2008). https://doi.org/10.1039/b720020j
  4. Sifer, N. and Gardner, K., "An Analysis of Hydrogen Production from Ammonia Hydride Hydrogen Generators for Use in Military Fuel Cell Environments," J. Power Sources, 8, 132-135(2004).
  5. MacKenzie, J. J. and Avery, W. H., "Ammonia Fuel:the Key to Hydrogen-based Transportation," IECEC 96, 3, 1761-1766(1996).
  6. Zamfirescu, C. and Dincer, I., "Using Ammonia as a Sustainable Fuel," J. Power Sources, 65, 185-459(2008).
  7. Schlogl, R., "Catalytic Synthesis of Ammonia-a Never-ending Story," Angew. Chem.-Int. Edit., 8, 42-2004(2003).
  8. Charles, N., "Heterogeneous Catalysis in Practice," AIChE J., 27, 174(1981).
  9. Rafiqul, I., Weber, C., Lehmann, B. and Voss, A., "Energy Efficiency Improvements in Ammonia Production," Energy, 30, 2487-2504(2005). https://doi.org/10.1016/j.energy.2004.12.004
  10. Farla, J. C. M., Hendriks, C. A. and Blok, K., "Carbon Dioxide Recovery from Industrial Processes," AJCC, 29, 439-461(1995).
  11. Li, Z., Liu, R., Xie, Y., Feng, S. and Wang, J., "A Novel Method for Preparation of Doped $Ba3_(Ca_{1.18}Bb_{1.82})O_{9-{\delta}}$:Application to Ammonia Synthesis at Atmospheric Pressure," Solid State Ion., 176, 1063-1066(2005). https://doi.org/10.1016/j.ssi.2005.01.009
  12. Marnellos, G., "Synthesis of Ammonia at Atmospheric Pressure with the Use of Solid State Proton Conductors," J. Catal., 193, 80-87(2000). https://doi.org/10.1006/jcat.2000.2877
  13. Wang, J. D., Xie, Y. H., Zhang, Z. F., Liu, R. Q. and Li, Z. J., "Protonic Conduction in $Ca^{2+}$ Doped $La_2M_2O_7$(M=Ce, Zr) with Its Application to Ammonia Synthesis Electrochemically," Mater. Res. Bull., 40, 1294-1302(2005). https://doi.org/10.1016/j.materresbull.2005.04.008
  14. Skodra, A. and Stoukides, M., "Electrocatalytic Synthesis of Ammonia from Steam and Nitrogen at Atmospheric Pressure," Solid State Ion., 180, 1332-1336(2009). https://doi.org/10.1016/j.ssi.2009.08.001
  15. Kordali, V., Kyriacou, G. and Lambrou, C., "Electrochemical Synthesis of Ammonia at Atmospheric Pressure and Low Temperature in a Solid Polymer Electrolyte Cell," Chem. Commun., 1673-1674(2000).
  16. Kreuer, K. D., "On the Development of Proton Conducting Materials for Technological Applications," Solid State Ion., 97, 1-15(1997). https://doi.org/10.1016/S0167-2738(97)00082-9
  17. Kim, J. H., Park, Y. M., Kim, T. and Kim, H., "Characterizations of Composite Cathodes with $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$ and $Ce_{0.9}Gd_{0.1}O_{1.95}$ for Solid Oxide Fuel Cells," Korean J. Chem. Eng., 29, 349-355(2012). https://doi.org/10.1007/s11814-011-0131-4
  18. Kim, D. G., Song, M., Lee, K. S., Kim, Y. S., Kim, Y. S. and Shin, H. S., "Preparation of $Ce_{0.8}Sm_{0.2}O_x$ Electrolyte Thin Film for Oxide Fuel Cells by Electrophoretic Deposition," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 49, 781-785(2011). https://doi.org/10.9713/kcer.2011.49.6.781
  19. Ivancic, I., "An Optimal Manual Procedure for Ammonia Analysis in Natural Waters by the Indophenol Blue Method," Water Res., 18, 1143-1147(1984). https://doi.org/10.1016/0043-1354(84)90230-6
  20. Amar, I. A., Petit, T. G., Zhang, L., Lan, R., Skabara, P. J. and Tao, S., "Electrochemical Synthesis of Ammonia Based on Doped-ceriacarbonate Composite Electrolyte and Perovskite Cathode," Solid State Ion., 201, 94-100(2011). https://doi.org/10.1016/j.ssi.2011.08.003
  21. Aika, K. I. and Ozaki, A., "Mechanism and Lsotope Effect in Ammonia Synthesis over Molybdenum Nitride," J. Catal., 14, 311-321(1969). https://doi.org/10.1016/0021-9517(69)90321-2
  22. Honkala, K., Hellman, A., Remediakis, I. N., Logadottir, A., Carlsson, A., Dahl, S., Christensen, C. H. and Norskov, J. K., "Ammonia Synthesis from First-principles Calculations," AAAS, 307, 555-558(2005).
  23. Ouzounidou, M., Skodra, A., Kokkofitis, C. and Stoukides, M., "Catalytic and Electrocatalytic Synthesis of $NH_3$ in a H+ Conducting Cell by Using An Industrial Fe Catalyst," Solid State Ion., 178, 153-159(2007). https://doi.org/10.1016/j.ssi.2006.11.019

Cited by

  1. Reaction Rate Enhancement During the Electrocatalytic Synthesis of Ammonia in a BaZr0.7Ce0.2Y0.1O2.9 Solid Electrolyte Cell vol.58, pp.18-20, 2015, https://doi.org/10.1007/s11244-015-0491-9
  2. Role of Protons in Electrochemical Ammonia Synthesis Using Solid-State Electrolytes vol.5, pp.9, 2017, https://doi.org/10.1021/acssuschemeng.7b01515
  3. Anion-exchange-membrane-based electrochemical synthesis of ammonia as a carrier of hydrogen energy vol.35, pp.8, 2018, https://doi.org/10.1007/s11814-018-0071-3
  4. Electrochemical synthesis of ammonia as a potential alternative to the Haber-Bosch process vol.2, pp.5, 2019, https://doi.org/10.1038/s41929-019-0280-0
  5. A review of the current trends in high-temperature electrocatalytic ammonia production using solid electrolytes vol.387, pp.None, 2014, https://doi.org/10.1016/j.jcat.2020.04.025
  6. Opportunities for intermediate temperature renewable ammonia electrosynthesis vol.8, pp.31, 2014, https://doi.org/10.1039/d0ta03753b
  7. A Comprehensive Review on the Recent Development of Ammonia as a Renewable Energy Carrier vol.14, pp.13, 2014, https://doi.org/10.3390/en14133732
  8. Green catalytic synthesis of ammonia using solid oxide electrolysis cells composed of multicomponent materials vol.374, pp.None, 2021, https://doi.org/10.1016/j.cattod.2021.03.029