DOI QR코드

DOI QR Code

메타구조 기반의 고효율 공진형 무선전력전송 시스템

Resonant Wireless Power Transfer System with High Efficiency using Metamaterial Cover

  • 김형준 (숭실대학교 정보통신전자공학부) ;
  • 서철헌 (숭실대학교 정보통신전자공학부)
  • Kim, Hyoungjun (Department of Electronics Engineering, Soongsil University) ;
  • Seo, Chulhun (Department of Electronics Engineering, Soongsil University)
  • 투고 : 2013.09.13
  • 발행 : 2014.01.25

초록

본 논문에서는 공진형 무선전력전송 시스템의 효율 개선을 위해 메타구조 기반의 단위 셀 및 배열 된 구조를 제안하였다. 자기장 집속을 위해 제로 굴절률 특성을 이용하였으며, 이를 구현하기 위해 유효 투자율의 실수가 0의 값을 갖도록 설계하였다. 제안된 단위 셀의 크기는 $70mm{\times}70mm{\times}3.2mm$이며, 동작 주파수는 13.56 MHz 이다. 또한, 배열된 구조의 크기는 $400mm{\times}400mm{\times}3.2mm$이며, 2-layer 구조로 이루어져 있다. 본 논문에서 제안한 공진형 무선전력전송 시스템의 효율은 송수신 공진기 사이의 거리가 100 mm ~ 400 mm에서 각각 94.8 %, 93.2 %, 91.4 %, 90.8 % 이며, 전체 거리에서 90 % 이상의 고효율 특성을 얻을 수 있었다.

In this paper, unit cell and arrayed cover for improving the transfer efficiency of resonant wireless power transfer system is proposed. We used the characteristic of zero refractive index for focusing a magnetic field between the transmitting resonator and receiving resonator. For zero refractive index, we designed the unit cell structure that have a negative value of effective permeability. The size of proposed unit cell based on metamaterial structure is $70mm{\times}70mm{\times}3.2mm$, operating frequency is 13.56 MHz. And, the size of arrayed cover is $400mm{\times}400mm{\times}3.2mm$, is consists of 2-layers. The transfer efficiency of the proposed wireless power transfer system are 94.8 %, 93.2 %, 91.4 %, 90.8 % at 100 mm, 200 mm, 300 mm and 400 mm (distance between transmitting and receiving resonator), respectively. And proposed WPT system has a transfer efficiency high than 90 % over the overall distances.

키워드

참고문헌

  1. A. Kurs, A. Karalis, R. Moffatt, J. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances", Science, vol. 317, Jul. 2007.
  2. A. Karalis, J. D. Joannopoulos, M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Annals of Physics, Vol. 323, No. 1, 34-48, Jan. 2008. https://doi.org/10.1016/j.aop.2007.04.017
  3. B. L. Cannon, J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, Jul. 2009. https://doi.org/10.1109/TPEL.2009.2017195
  4. Xun Liu, S, Y, Hui, "Simulation Study and Experimental Verification of a Universal Contactless Battery Charging Platform With Localized Charging Features," IEEE Transactions on Power Electronics, Vol. 22, No. 6, 2202-2210, Nov. 2007. https://doi.org/10.1109/TPEL.2007.909301
  5. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Soviet Physics Uspekhi, Vol. 10, 509-514, Jan. 1968. https://doi.org/10.1070/PU1968v010n04ABEH003699
  6. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, "Simultaneous negative phase and group velocity of light in a metamaterial," Science, Vol. 32, No. 5775, 892-894, 2006.
  7. L. Markley, and G. V. Eleftheriades, "A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 28-32, 2007. https://doi.org/10.1109/LAWP.2007.890758