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ON THE SIMPLICITY OF THE CODED PATH OF THE

CODE (i)

Dal Young Jeong and Jeong Suk Son

Abstract. J. Malkevitch defined the coded path in r-valent polytopal

graphs of uniform face structure and showed many interesting properties
of the coded paths. In this paper, we study the simplicity of coded paths

in an m-valent planar multigraph which is not a polytopal graph.

1. Introduction

In this section, we introduce some definitions and theorems briefly.
A graph G is an ordered triple (V (G), E(G), ψG) consisting of a nonempty

set V (G) of vertices, a set E(G) of edges, and an incidence function ψG that
associates with each edge of G an unordered pair of (not necessarily distinct)
elements of V (G). If e is an edge and u and v are vertices such that ψG(e) = uv,
then e is said to join two vertices u and v; the vertices u and v are called the
endpoints (or endvertices) of the edge e. The endpoints of an edge are said to
be incident to an edge and two vertices which are incident with the same edge,
are said to be adjacent.

Two or more edges that join the same pair of distinct vertices are called
parallel edges (or multiple edges). An edge joining a vertex to itself is called a
loop. A graph with no loops or no parallel edges is called a simple graph. A
graph which is not simple is said to be a multigraph.

The number of edges at the vertex v is called the valence of v (or the degree
of v) and is denoted by d(v). If every vertex of a graph G has the same valence
r, then G is called an r-valent (or r-regular) graph.

A graph G is called planar if it can be drawn in the plane so that the edges of
the graph intersect only at vertices. When a connected planar graph is drawn
in the plane, the regions bounded by edges of the graph which do not contain
neither vertices nor edges in their interiors are called faces. There will always
be precisely one face which is unbounded in a planar graph and this will be
called the infinite face. The edges bounding a face are called its sides.
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Suppose G is a planar connected graph. A face F with k sides will be called
a k-gon. If the number of sides of F is a multiple of k, it will be called a multi
k-gon. If all the faces of a graph G are k-gons (or multi k-gons), then G will
be called a k-gonal (or multi k-gonal, respectively) graph.

A bipartite graph is one whose vertex set can be partitioned into two disjoint
subsets X and Y , so that each edge has one endpoint in X and the other
endpoint in Y .

For other things which are not mentioned here, we refer to Bondy & Murty
[1] or G. Chartrand [3].

We state a few theorems for further reading without proof.

Theorem 1.1. A graph is bipartite if and only if it contains no odd cycle.

Theorem 1.2. A graph G is bipartite if and only if G is 2-colorable.

J. Malkevitch defined a “coded path” in an r-valent polytopal graph [2].
Similarly, we define a “coded trail” in an r-valent multigraph.

Figure 1. A coded path (a1, a2, . . . , an)

Let G be a connected planar r-valent (r ≥ 2) multigraph which has no
loops. We consider an ordered n-tuple (a1, . . . , an) of integers such that 1 ≤
ai ≤ r − 1, i = 1, 2, . . . , n. We call such a sequence a code of length n.

Let e0 be any edge of G with endpoints v0 and v1. The coded trail in the
direction from v0 to v1 determined by the code C is an alternating sequence of
vertices and edges

v0, e0, v1, e1, v2, . . . , vk−1, ek, vk, . . .

where each edge is chosen as follows (Figure 1): At the vertex vi, i ≥ 1, there
are r− 1 edges incident to the vertex vi except the edge ei−1. Those edges can
be numbered from left to right starting with 1 based on the direction from vi−1
to vi. Then we choose the aj-th (where j ≡ i (mod n)) edge as the next edge
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ei (if j ≡ 0, choose an-th edge) and let vi+1 be the other endpoint of the edge
ei (Figure 1).

The trail terminates with the edge ei if the followings are satisfied:
(a) There is some i such that i ≡ n− 1 (mod n) and ei+1 = e0;
(b) the choice for ei+2 would be e1.
A trail determined by the code C is said to be a C-trail. If all the vertices

in a C-trail are distinct, it is called a C-path. If C-path ends up with a cycle,
we say that the C-path is simple with respect to the directed edge e0 = v0v1.

Figure 2 shows the (1, 2)-path associated with the edge e0 = v0v1 in a 4-
valent graph.

Figure 2. A coded path (1,2)

If, for every edge e = v0v1 of G, the C-paths associated with the directed
edges v0v1 and v1v0 are simple, then C is said to be universally simple with
respect to G. Note that the code (1) and the code (r−1) of an r-valent graph G
are universally simple with respect to G if G is 2-connected. Actually, each of
the simple C-paths associated with the directed edge v0v1 uniquely determines
a face of the graph G.

2. Main results

Now, we study the simplicity of a C-trail where C = (i), 1 ≤ i ≤ m − 1 in
an m-valent graph.

Theorem 2.1. For m ≥ 2, let G be an m-valent planar multi 2-gonal multi-
graph. Then the code (i) is universally simple with respect to G.

Proof. Since G has only even cycles, it is bipartite. Since m ≥ 2, G is 2-
connected and so two codes (1) and (m− 1) are universally simple. Therefore
we only consider the code (i) for 2 ≤ i ≤ m− 2.

Suppose that (i)-trail does not end up with a cycle for some i ∈ {2, . . . ,m−
2}. Then there exists a walk that is made by (i)-trail associated with a directed
edge e0 = v0v1, which has at least one crossing vertex as shown in Figure 3.
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Figure 3. A walk that is made by (i)-trail

Let vk be a crossing vertex and let the edge join the vertices vk−1 and vk be
ek−1(Figure 3). Now, label m− 1 edges incident to the vertex vk except ek−1
from left to right with numbers 1, 2, . . . , m− 1. Let j be the label of the edge
which the (i)-trail chooses when it visits the vertex vk again.

First, we consider the case where 1 ≤ j ≤ i − 1. Then an (i)-trail has a
subtrail as follows (Figure 4):

· · · vk−1ek−1vkekvk+1 · · ·ueuvkevv · · ·

Figure 4. The case where 1 ≤ j ≤ i− 1

Let C ′ = vkekvk+1 · · ·ueuvk, then it is a cycle. For our proof, delete all the
vertices outside of C ′. Then we have a subgraph G′ whose vertices are either on
or inside the cycle C ′ and each vertex on the cycle is of degree i+ 1 except the
vertex vk whose degree is i− j + 1 (Figure 4). Since the graph G is bipartite,
so is G′. Hence the vertices of G′ can be colored by two colors, say white and
black. We may assume that the vertex vk is a white vertex and the length of
the cycle C

′
is 2p for some positive integer p without loss of generality. Let the
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numbers of the black vertices and the white vertices inside the cycle be nb and
nw, respectively. Then the sum of degrees of the black vertices in G′ is

(i+ 1)× p+m× nb,
while the sum of degrees of the white vertices is

(i+ 1)× (p− 1) + (i− j + 1) +m× nw.
Since G′ is bipartite, each edge joins a black vertex to a white vertex without

making any intersection. So the sum of the degrees of the black vertices must
be equal to the sum of the degrees of the white vertices:

(i+ 1)× p+m× nb = (i+ 1)× (p− 1) + (i− j + 1) +m× nw,
which is simplified into

m× (nw − nb) = j.

However, it is impossible because the left hand side is a multiple of m while
the right hand side is not a multiple of m (1 ≤ j ≤ i− 1 < m).

Now, let’s consider the case where i+ 1 ≤ j ≤ m− 1. By applying a similar
argument for the case 1 ≤ j ≤ i, we can get a cycle C ′ of length 2p for some
positive integer p. We delete the vertices outside C

′
to obtain a graph G′. Then

the degree of each vertex except vk is m− i+ 1 while the degree of the vertex
vk is j − i + 1 in G′. By applying the same argument for the case 1 ≤ j ≤ i,
we obtain the following equality.

(m− i+ 1)× p+m× nb = (m− i+ 1)× (p− 1) + (j − i+ 1) +m× nw,
which is simplified into

m× (nw − nb) = m− j.
Clearly, this is impossible because the left hand side is a multiple of m while

the right hand side is not a multiple of m.
Thus, an (i)-trail is simple with respect to the directed edge e0 = v0v1.
Similarly, we can show that an (i)-trail associated with the directed edge

e0 = v1v0 ends up with a cycle. Thus, the code (i) is universally simple with
respect to G. �

The following theorem provides more information on vertices inside the cycle
formed by the (i)-path.

Theorem 2.2. For m ≥ 2, let G be an m-valent planar bipartite graph with
a bipartition (X,Y ) and let C be a cycle in G. If each vertex on the cycle C
is incident to the same number of edges inside the cycle C, then the number of
the vertices of X which are inside the cycle is equal to the number of vertices
of Y which are inside the cycle.

Proof. Since G is a bipartite graph, every cycle in G is of even length and all
the vertices are colored properly with black and white. Let C be a cycle of
length 2p for some positive integer p and let k be the number of edges inside
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the cycle C incident to each vertex on the cycle C. Clearly, the number of
black vertices and the number of white vertices on the cycle C are equal.

Delete all the vertices outside the cycle C. Let nb and nw be the number
of the black vertices and the number of the white vertices inside the cycle,
respectively. Since G is bipartite, each edge must join a black vertex and a
white vertex without making an intersection. So the number of edges incident
to black vertices and the number of edges incident to white vertices must be
equal. This means that the degree sum of the black vertices and the degree
sum of the white vertices are equal. Hence we have the following equation

(k + 2)× p+m× nb = (k + 2)× p+m× nw,
which yields

nb = nw,

Therefore, the number of the vertices of X which are inside the cycle is equal
to the number of vertices of Y which are inside the cycle. �
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