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CROSSED MODULES AND STRICT GR-CATEGORIES

Nguyen Tien Quang, Pham Thi Cuc, and Nguyen Thu Thuy

Abstract. In this paper we state some applications of Gr-category the-
ory to the classification problem of crossed modules and to that of group
extensions of the type of a crossed module.

1. Introduction

Theory of Gr-categories, or of 2-groups, with its generality has more and
more applications. The relationship between this theory and cohomology of
groups is stated by Sinh in [13], and it is developed by Cegarra et al. in the
theory of graded categorical groups [7] and in that of fibred categorical groups
[6]. In another aspect, one can study more deeply the simple case of this theory
as considering applications of strict Gr-categories.

A Gr-category [13] is a monoidal category in which every morphism is invert-
ible and every object has a weak inverse (Here, a weak inverse of an object x is
an object y such that x⊗ y and y⊗ x are both isomorphic to the unit object).
A strict Gr-category is a strict monoidal category in which every morphism is
invertible and every object has a strict inverse (so that x ⊗ y and y ⊗ x are
actually equal to the unit object). This notion is also called G-groupoid by
Brown and Spencer [4], or 2-group by Noohi [11], or strict 2-group by Baez and
Lauda [1], or strict categorical group by Joyal and Street [9].

Brown and Spencer showed that the category of crossed modules ([4, Theo-
rem 1]) is equivalent to the category of G-groupoids (morphisms in the category
of crossed modules are homomorphisms of crossed modules and those in the
category of G-groupoids are functors of groupoids preserving the group struc-
ture). The alternative definitions of strict Gr-categories were introduced in
[1] by Baez and Lauda, and the equivalent structures to crossed modules were
presented in [5] by Brown and Wensley. Many of results on crossed modules
were extended for crossed complexes by Brown, Higgins and Sivera [2].

Our aim is to seek new applications of Gr-category theory concerning crossed
modules. The above mentioned theorem of Brown and Spencer shows that
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strict Gr-categories can be seen as a weakening of crossed modules. Thus,
some facts of crossed modules can be found in the more generalized form of
Gr-categories with the more natural techniques in proofs.

The present paper consists of two main results. Firstly, we prove that the
category Grstr of strict Gr-categories and regular Gr-functors is equivalent
to the category Cross of crossed modules in which a morphism consists of a
homomorphism of crossed modules, (f1, f0) : M → M′, and an element of
the group of 2-cocycles Z2(π0M, π1M

′). This result contains [4, Theorem 1].
Secondly, we use the Gr-category theory to study the group extension problem

of the type of a crossed module. For any crossed module B
d
→ D and any group

homomorphism ψ : Q→ Cokerd, one can define a strict Gr-category P. Then,
for any Gr-functor F : DisQ→ P we construct an associated extension of type
B → D. Therefore, there is a Schreier bijection (Theorem 7)

Hom(ψ,0)[DisQ,P] ↔ ExtB→D(Q,B, ψ),

where ExtB→D(Q,B, ψ) is the set of equivalence classes of extensions of B by
Q of type B → D inducing ψ. This result implies the classification theorem of
Brown and Mucuk ([3, Theorem 5.2]).

We believe that the techniques used here can be effective for the homotopy
classification problem of crossed modules, as well as for the dual problem of
the group extension problem of the type of a crossed module.

2. Preliminaries

For convenience, we recall here some well-known results on Gr-categories
and Gr-functors (see [12]).

We often denote by G = (G,⊗, I, a, l, r) a Gr-category. If (F, F̃ , F∗) is a
monoidal functor between Gr-categories, it is called a Gr-functor. Then the

isomorphism F∗ : I ′ → FI can be deduced from F and F̃ . Hereafter, we refer

to (F, F̃ ) as a Gr-functor.

Two Gr-functors (F, F̃ ) and (F ′, F̃ ′) from G to G′ are homotopic if there is

a monoidal natural equivalence, or a homotopy α : (F, F̃ , F∗) → (F ′, F̃ ′, F ′
∗)

which is a natural isomorphism such that

F ′

∗ = αI ◦ F∗.

Each Gr-category G determines three invariants:
i) the set Π = π0G of isomorphism classes of the objects in G is a group

where the multiplication is induced by the tensor product in G,
ii) the set A = π1G of automorphisms of the unit object I is an abelian

group where the operation, denoted by +, is the composition. Further, A is a
left Π-module,

iii) an element k ∈ H3(Π, A) is induced by the associativity constraint of G.
Based on these data, one can construct a Gr-category, denoted by SG, which

is equivalent to G, as follows. SG is a category whose objects are the elements of
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Π and whose morphisms are automorphisms (x, a) : x → x, where x ∈ Π, a ∈
A. The composition of two morphisms is induced by the addition in A

(x, a) ◦ (x, b) = (x, a+ b).

The operations on SG are given by

x⊗ y = x.y, x, y ∈ Π,

(x, a) ⊗ (y, b) = (xy, a+ xb), a, b ∈ A.

The unit constraints of the Gr-category SG are strict, and its associativity
constraint is

ax,y,z = (xyz, k(x, y, z)).

The Gr-category SG is called a reduction of the Gr-category G. We say that
SG is of type (Π, A, k), or simply type (Π, A), if π0G and π1G are replaced with
the group Π and the Π-module A, respectively.

Let S = (Π, A, k), S
′ = (Π′, A′, k′) be Gr-categories. A functor F : S → S

′

is of type (ϕ, f) if

F (x) = ϕ(x), F (x, a) = (ϕ(x), f(a)),

where ϕ : Π → Π′, f : A → A′ are group homomorphisms satisfying f(xa) =
ϕ(x)f(a) for x ∈ Π, a ∈ A. Note that if Π′-module A′ is considered as a Π-
module under the action xa′ = ϕ(x).a′, then f : A → A′ is a homomorphism
of Π-modules. In this case, we call (ϕ, f) a pair of homomorphisms, and

(1) ξ = ϕ∗k′ − f∗k ∈ Z3(Π, A′),

where

(f∗k)(x, y, z) = f(k(x, y, z)),

(ϕ∗k′)(x, y, z) = k′(ϕx, ϕy, ϕz),

is an obstruction of the functor F .
The results on monoidal functors of type (ϕ, f) presented in [12] can be

summarized in the following proposition.

Proposition 1. Let G,G′ be two Gr-categories and S, S′ be their reduced Gr-

categories, respectively.

i) Every Gr-functor (F, F̃ ) : G → G′ induces a Gr-functor SF : S → S′ of

type (ϕ, f).

ii) Every Gr-functor (F, F̃ ) : S → S′ is a functor of type (ϕ, f).
iii) The functor F : S → S′ of type (ϕ, f) is realizable, i.e., there exist

isomorphisms F̃x,y so that (F, F̃ ) is a Gr-functor, if and only if the obstruction

ξ vanishes in H3(Π, A′). Then, there is a bijection

Hom(ϕ,f)[S, S
′] ↔ H2(Π, A′),

where Hom(ϕ,f)[S, S
′] is the set of homotopy classes of the Gr-functors of type

(ϕ, f) from S to S′.



12 NGUYEN TIEN QUANG, PHAM THI CUC, AND NGUYEN THU THUY

3. Classification of crossed modules by strict Gr-categories

Definition. A crossed module is a quadruple M = (B,D, d, θ) where d : B →
D, θ : D → AutB are group homomorphisms satisfying the following relations
C1. θd = µ,
C2. d(θx(b)) = µx(d(b)), x ∈ D, b ∈ B,

where µx is an inner automorphism given by conjugation with x.

In this paper, the crossed module (B,D, d, θ) is sometimes denoted by B
d
→

D, or by B → D. For convenience, we denote by the addition for the operation
in B and by the multiplication for that in D.

The following properties follow from the definition of a crossed module.

Proposition 2. Let M = (B,D, d, θ) be a crossed module.

i) Kerd ⊂ Z(B), where Z(B) is the center of B.

ii) Imd is a normal subgroup in D.

iii) The homomorphism θ induces a homomorphism ϕ : D → Aut(Kerd) by

ϕx = θx|Kerd.

iv) Kerd is a left Cokerd-module under the action

sa = ϕx(a), a ∈ Kerd, x is a representative of s ∈ Cokerd.

The groups Coker d, Kerd are also denoted by π0M, π1M, respectively.

It is known that a strict Gr-category can be seen as a crossed module (see
[4], [9, Remark 3.1]). In order to motivate the readers, we state this in detail,
whence the classification theorem of crossed modules is obtained (Theorem 5).

For any crossed module (B,D, d, θ) we can construct a strict Gr-category
PB→D = P, called the Gr-category associated to the crossed module B → D,
as follows.

ObP = D, Hom(x, y) = {b ∈ B/x = d(b)y},

where x, y are objects of P. The composition of two morphisms is given by

(x
b
→ y

c
→ z) = (x

b+c
→ z).

The tensor product on objects is given by the multiplication in the group D,

and for two morphisms (x
b
→ y), (x′

b′

→ y′), one defines

(2) (x
b
→ y)⊗ (x′

b′

→ y′) = (xx′
b+θyb

′

−→ yy′).

The associativity and unit constraints are identities. Then, by definition of
crossed module, we can easily check that P is a strict Gr-category.

Conversely, for any strict Gr-category (P,⊗) we define an associated crossed
module MP = (B,D, d, θ) as follows. Set

D = ObP, B = {x
b
−→ 1/x ∈ D}.
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The operations in D and in B are given by

xy = x⊗ y, b+ c = b⊗ c,

respectively. Then D becomes a group in which the unit is 1, the inverse of x

is x−1 (x⊗x−1 = 1). B is a group in which the unit is the morphism (1
id1−−→ 1)

and the inverse of (x
b
−→ 1) is the morphism (x−1 b

−→ 1) (b⊗ b = id1).
The homomorphisms d : B → D and θ : D → AutB are given by

d(x
b
−→ 1) = x,

θy(x
b
−→ 1) = (yxy−1

idy+b+idy−1

−−−−−−−−→ 1),

respectively. It is easy to see that (B,D, d, θ) is a crossed module.

Definition. A homomorphism (f1, f0) : (B,D, d, θ) → (B′, D′, d′, θ′) of crossed
modules consists of group homomorphisms f1 : B → B′, f0 : D → D′ satisfying
H1. f0d = d′f1,
H2. f1(θxb) = θ′f0(x)f1(b) for all x ∈ D, b ∈ B,

We need two following lemmas to prove the classification theorem.

Lemma 3. Let (f1, f0) : (B,D, d, θ) → (B′, D′, d′, θ′) be a homomorphism of

crossed modules. Let P and P
′ be the two Gr-categories associated to the crossed

modules (B,D, d, θ) and (B′, D′, d′, θ′), respectively.
i) There exists a functor F : P → P′ defined by F (x) = f0(x), F (b) = f1(b),

for x ∈ ObP, b ∈ MorP.

ii) Natural isomorphisms F̃x,y : F (x)F (y) → F (xy) together with F is a

Gr-functor if and only if F̃x,y = ϕ(x, y), where ϕ ∈ Z2(Cokerd,Ker d′).

Proof. i) By the construction of the Gr-category associated to a crossed module
and by the fact that f1 is a group homomorphism, one can easily check that F
is a functor.

ii) The group homomorphisms f1, f0 satisfying H2 is equivalent to the equa-
tion

F (b⊗ c) = F (b)⊗ F (c)

for any two morphisms (x
b
→ x′), (y

c
→ y′) in P.

Besides, since f0 is a homomorphism and F (x) = f0(x), F̃x,y : F (x)F (y) →

F (xy) is a morphism in P if and only if d′(F̃x,y) = 1′, i.e.,

F̃x,y ∈ Kerd′ ⊂ Z(B′).
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Then, the naturality of (F, F̃ ), or the commutativity of the diagram

F (x)F (y) F (xy)

F (x′)F (y′) F (x′y′),

✲
F̃x,y

❄

F (b)⊗F (c)

❄

F (b⊗c)

✲

F̃
x′,y′

is equivalent to the equation F̃x,y = F̃x′,y′ for x = (db)x′, y = (dc)y′. This
defines a function ϕ : Coker d× Coker d→ Ker d′ by

ϕ(x, y) = F̃x,y.

Since F (1) = 1′, the compatibility of (F, F̃ ) with the unit constraints is

equivalent to the normality of ϕ. The compatibility of (F, F̃ ) with the associa-
tivity constraints is equivalent to

θ′F (x)(F̃y,z) + F̃x,yz = F̃x,y + F̃xy,z,

or
xϕ(y, z) + ϕ(x, y z) = ϕ(x, y) + ϕ(x y, z),

where the action of Coker d on Ker d′ is canonically induced by that of Cokerd′

on Ker d′ via f0, xb
′ = f0(x)b

′. Thus, ϕ ∈ Z2(Cokerd,Ker d′). �

Definition. A Gr-functor (F, F̃ ) : P → P′ is called regular if the functor F
preserves the operation ⊗, that means
S1. F (x)⊗ F (y) = F (x⊗ y),
S2. F (b)⊗ F (c) = F (b ⊗ c)

for x, y ∈ ObP, b, c ∈ MorP.

Thanks to Lemma 3, one can define the category

Cross

whose objects are crossed modules and whose morphisms are triples (f1, f0, ϕ),
where (f1, f0) : (B → D) → (B′ → D′) is a homomorphism of crossed modules
and ϕ ∈ Z2(Coker d,Kerd′).

Lemma 4. Let P, P′ be corresponding Gr-categories associated to the crossed

modules (B,D, d, θ), (B′, D′, d′, θ′), and (F, F̃ ) : P → P′ be a regular Gr-

functor. Then, the triple (f1, f0, ϕ), where

f1(b) = F (b), f0(x) = F (x), ϕ(x, y) = F̃x,y,

for b ∈ B, x, y ∈ D, x, y ∈ Cokerd, is a morphism in the category Cross.

Proof. By the condition S1, f0 is a group homomorphism. Since F preserves
the composition of morphisms, f1 is a group homomorphism.

Since any b ∈ B can be seen as a morphism (db
b
→ 1) in P, (F (db)

F (b)
→ 1′) is

a morphism in P′, whence H1 holds: f0(d(b)) = d′(f1(b)) for all b ∈ B.
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According to the proof of Theorem 3, H2 holds thanks to the fact that the
homomorphism f1 satisfies S2. Therefore, the pair (f1, f0) is a homomorphism
of crossed modules.

Now, also by Lemma 3, F̃x,y ∈ Kerd′ ⊂ Z(B′), and it defines a function

ϕ ∈ Z2(Cokerd,Ker d′) by ϕ(x, y) = F̃x,y. �

We write Grstr for the category of strict Gr-categories and regular Gr-
functors.

Theorem 5 (Classification Theorem). There exists an equivalence

Φ : Cross → Grstr

(B → D) 7→ PB→D

(f1, f0, ϕ) 7→ (F, F̃ )

where F (x) = f0(x), F (b) = f1(b), F̃x,y = ϕ(x, y) for x, y ∈ D, b ∈ B.

Proof. Let P and P
′ be the Gr-categories associated to crossed modules B → D

and B′ → D′, respectively. By Lemma 3, the correspondence (f1, f0, ϕ) 7→

(F, F̃ ) defines an injection on the homsets,

Φ : HomCross(B → D,B′ → D′) → HomGrstr(PB→D,PB′→D′).

By Lemma 4, Φ is surjective.
If P is a strict Gr-category and MP is its associated crossed module, then

Φ(MP) = P (rather than an isomorphism). Thus, Φ is an equivalence. �

Remark 1. The category 2-Gp of G-groupoids is a subcategory of the category

Grstr whose morphisms are monoidal functors (F, F̃ ) in which F̃ = id. The
category CrossMd of crossed modules is a subcategory of the category Cross

whose morphisms are (f1, f0, ϕ) in which ϕ = 0. Therefore, Theorem 5 contains
[4, Theorem 1].

4. Classification of group extensions of the type of a crossed module

We now recall the notion of an extension of groups of the type of a crossed

module due to Dedeker [8] (see also [2, 3]).
Note that if B is a normal subgroup in D, then the quadruple (B,D, d, θ) is

a crossed module in which d : B → D is an inclusion, θ : D → AutB is given
by conjugation.

Definition. Let M = (B
d
→ D) be a crossed module. An extension of B by

Q of type M is a diagram of homomorphisms of groups

E : 0 // B
j

// E
p

//

ε

��

Q // 1,

B
d

// D
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where the top row is exact, the quadruple (B,E, j, θ′) is a crossed module in
which θ′ is given by conjugation, and (idB, ε) is a homomorphism of crossed
modules.

Two extensions of B by Q of type B
d
−→ D are said to be equivalent if there

is a morphism of exact sequences

0 // B
j

// E
p

//

α

��

Q // 1, E
ε

// D

0 // B
j′

// E′
p′

// Q // 1, E′ ε′
// D

such that ε′α = ε. Obviously, α is an isomorphism.
In the diagram

0 // B
j

// E
p

//

ε

��

Q //

ψ

��

1,

B
d

// D
q
// Cokerd

(3)

where q is the canonical homomorphism, since the top row is exact and q◦ε◦j =
q ◦ d = 0, there is a homomorphism ψ : Q → Cokerd such that the right hand
side square commutes. Moreover, ψ only depends on the equivalence class of
the extension E , and we say that the extension E induces the homomorphism
ψ.

Our objective is to study the set

ExtB→D(Q,B, ψ)

of equivalence classes of extensions of B by Q of type B → D inducing ψ : Q→
Cokerd. The classification theorem for such group extensions has been proved
in some ways (see Brown and Mucuk [3], Theorem 5.2).

In the present paper, we use the obstruction theory of Gr-functors to prove
Theorem 5.2 in [3]. Further, the second assertion of this theorem can be seen
as a consequence of Schreier Theory (Theorem 7) by means of Gr-functors
between strict Gr-categories PB→D and DisQ, where DisQ is the Gr-category
of type (Q, 0, 0) (and it is just the Gr-category associated to the crossed module
(0, Q, 0, 0)). Each such Gr-functor induces an extension in ExtB→D(Q,B, ψ)
as in the following lemma.

Lemma 6. Let B → D be a crossed module and ψ : Q → Cokerd be a group

homomorphism. Then, for each Gr-functor (F, F̃ ) : DisQ → P which satisfies

F (1) = 1 and induces the pair (ψ, 0) : (Q, 0) → (Coker d,Kerd), there exists

an extension EF of B by Q of type B → D inducing ψ.

The extension EF is called a crossed extension associated to the Gr-functor
F .
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Proof. Let (F, F̃ ) : DisQ → P be a Gr-functor which satisfies F (1) = 1 and
induces the pair (ψ, 0). One defines the function f : Q×Q→ B by

f(x, y) = F̃x,y.

Since F̃x,y is a morphism in P,

F (x).F (y) = df(x, y).F (xy).

As in the proof of Lemma 3, f is a normalized function satisfying

(4) θF (x)f(y, z) + f(x, yz) = f(x, y) + f(xy, z).

One can define the crossed product E0 = [B, f,Q], i.e., E0 = B × Q with
the operation

(b, x) + (c, y) = (b+ θF (x)c+ f(x, y), xy).

The set E0 is a group due to the normality of f and the equation (4). The zero
is (0, 1) and −(b, x) = (b′, x−1), where θF (x)(b

′) = −b − f(x, x−1). Then, we
have an exact sequence of groups

EF : 0 → B
j0
→ E0

p0
→ Q→ 1,

where j0(b) = (b, 1); p0(b, x) = x, b ∈ B, x ∈ Q. Since j0(B) is a normal
subgroup in E0, j0 : B → E0 is a crossed module where the action θ0 : E0 →
AutB is given by conjugation.

The map ε : E0 → D given by

(5) ε(b, x) = dbF (x), (b, x) ∈ E0,

is a group homomorphism. Then, the pair (id, ε) is a homomorphism of crossed
modules. In fact, ε ◦ j0 = d. Further, for all (b, x) ∈ E0, c ∈ B,

θ0(b,x)(c) = j−1
0 [µ(b,x)(c, 1)] = µb(θF (x)c),

θε(b,x)(c) = θdbF (x)(c) = µb(θF (x)c).

Hence, θ0(b,x)(c) = θε(b,x)(c). Therefore, one obtains an extension of type B →

D,

EF : 0 // B
j0

// E0
p0

//

ε

��

Q //

ψ

��

1.

B
d

// D
q
// Cokerd

For all x ∈ Q,

qε(b, x) = q(db.F (x)) = qF (x) = ψ(x),

i.e., the extension EF induces ψ : Q→ Cokerd. �

Under the hypothesis of Lemma 6, we state the following result.
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Theorem 7 (Schreier Theory for group extensions of the type of a crossed
module). There is a bijection

Ω : Hom(ψ,0)[DisQ,PB→D] → ExtB→D(Q,B, ψ).

Proof. Step 1 : Gr-functors (F, F̃ ) and (F ′, F̃ ′) are homotopic if and only if the

corresponding associated extensions EF , EF ′ are equivalent.

First, let us recall that every graded monoidal functor (F, F̃ ) is homotopic

to one (G, G̃) in which G(1) = 1. Hence, we can restrict our attention to this
kind of graded monoidal functors.

Let F, F ′ : DisQ→ P be homotopic by a homotopy α : F → F ′. By Lemma
6, there exist the extensions EF and EF ′ associated to F and F ′, respectively.
By definition of a homotopy, α1 = 0 and

(6) F (x) = d(αx).F
′(x).

The naturality of α leads to

F̃x,y + αxy = αx ⊗ αy + F̃ ′

x,y.

By the relation (2),

(7) f(x, y) + αxy = αx + θF ′(x)(αy) + f ′(x, y),

where f(x, y) = F̃x,y, f
′(x, y) = F̃ ′

x,y. Now we set

α∗ : E0 → E′

0

(b, x) 7→ (b + αx, x).

For all (b, x), (c, y) ∈ E0, one has

α∗[(b, x) + (c, y)] = α∗[(b+ θF (x)c+ f(x, y), xy)]

= (b+ θF (x)c+ f(x, y) + αxy, xy),

α∗(b, x) + α∗(c, y) = (b+ αx, x) + (c+ αy, y)

= (b+ αx + θF ′(x)(c+ αy) + f ′(x, y), xy).

The condition α∗ being a group homomorphism is equivalent to

b+ θF (x)c+ f(x, y) + αxy = b+ αx + θF ′(x)(c+ αy) + f ′(x, y).

This follows from

θF (x)(c) + f(x, y) + αxy
(6)
= θdαxF ′(x)(c) + f(x, y) + αxy

(C1)
= µαx

(θF ′(x)c) + f(x, y) + αxy

(7)
= αx + θF ′(x)(c+ αy) + f ′(x, y).



CROSSED MODULES AND STRICT GR-CATEGORIES 19

Further, it is easy to see that the following diagram commutes

0 // B
j

// EF
p

//

α∗

��

Q // 1, EF
ε

// D

0 // B
j′

// EF ′

p′
// Q // 1, EF ′

ε′
// D

We next show that ε′α∗ = ε. It follows from the equations (5), (6) that

ε′α∗(b, x) = ε′(b + αx, x) = d(b + αx) · F
′(x)

= d(b) · d(αx) · F
′(x) = d(b) · F (x) = ε(b, x).

Thus, two extensions EF and EF ′ are equivalent.
Conversely, if α∗ : EF → EF ′ is an isomorphism such that (idB, α

∗, idQ) is
an equivalence of two extensions, then one can easily check that

α∗(b, x) = (b+ αx, x),

where α : Q → B is a function satisfying α1 = 0. Thus, α is a homotopy
between F and F ′ as we see by retracing our steps.

Step 2 : Ω is surjective.

Let E be an extension E of B by Q of type B → D inducing ψ : Q→ Cokerd
as in the commutative diagram (3). We prove that E is equivalent to a crossed

extension EF which is associated to some Gr-functor (F, F̃ ) : DisQ→ P.
For each x ∈ Q, choose a representative ex ∈ E such that p(ex) = x, e1 = 0.

Each element of E is written uniquely as b + ex, where b ∈ B, x ∈ Q. The
system of representatives {ex} induces a normalized function f : Q × Q → B
by

(8) ex + ey = f(x, y) + exy,

and automorphisms ϕx of B by

ϕx = µex : b 7→ ex + b− ex.

It follows from the condition H2 of the homomorphism (id, ε) : (B → E) →
(B → D) of crossed modules that

θεex = ϕx.

Then, the group structure of E can be described by

(b+ ex) + (c+ ey) = b+ ϕx(c) + f(x, y) + exy,

Now, we defines a Gr-functor (F, F̃ ) : DisQ → P as follows. Since ψ(x) =
ψp(ex) = qε(ex), ε(ex) is a representative of ψ(x) in D. So, one sets

F (x) = ε(ex), F̃x,y = f(x, y).

Since F (x) = qε(ex) = ψ(x), then F induces (ψ, 0). The relation (8) shows

that F̃x,y are actually morphisms in P. Clearly, F (1) = 1. This together with

the normality of the function f(x, y) implies the compatibility of (F, F̃ ) with
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the unit constraints. The associativity law of the operation in E leads to

the relation (4). This proves that (F, F̃ ) is compatible with the associativity

constraints. The naturality of F̃x,y and the condition of F preserving the
composition are obvious.

Finally, one can easily check that the crossed extension EF associated to

(F, F̃ ) is equivalent to the extension E by the isomorphism β : (b, x) 7→ b +
ex. �

Let P = PB→D be the Gr-category associated to the crossed module B
d
→ D.

Since π0P = Cokerd, π1P = Kerd, its reduced category is

SP = (Cokerd,Kerd, k), k ∈ H3(Cokerd,Kerd).

Then, according to (1), the homomorphism ψ : Q → Cokerd induces an ob-

struction

ψ∗k ∈ Z3(Q,Kerd).

By this notion of obstruction one can state a new proof of [3, Theorem 5.2]
whose techniques differ from those used in [3].

Theorem 8. Let (B,D, d, θ) be a crossed module and ψ : Q → Cokerd be a

group homomorphism. Then, the vanishing of ψ∗k in H3(Q,Kerd) is necessary
and sufficient for there to exist an extension of B by Q of type B → D inducing

ψ. Further, if ψ∗k vanishes, then the equivalence classes of such extensions are

bijective with H2(Q,Kerd).

Proof. By the assumption ψ∗k = 0, it follows from Proposition 1 that there

is a Gr-functor (Ψ, Ψ̃) : DisQ → SP. Then the composition of (Ψ, Ψ̃) and

(H, H̃) : SP→P is a Gr-functor (F, F̃ ) : DisQ→P, and hence, by Lemma 6 one
obtains an associated extension EF .

Conversely, suppose that there is an extension making the diagram (3) com-
mutative. Let P′ be the category associated to the crossed module B → E. By
Lemma 3, there is a Gr-functor F : P′ → P. Since the reduced Gr-category of
P′ is DisQ, by Proposition 1 F induces a Gr-functor of type (ψ, 0) from DisQ
to (Cokerd,Kerd, k). Now, by Proposition 1, the obstruction of the pair (ψ, 0)
vanishes in H3(Q,Kerd), i.e., ψ∗k = 0.

The final assertion of the theorem is obtained from Theorem 7.
Firstly, there is a natural bijection

Hom[DisQ,P] ↔ Hom[DisQ,SP].

Since π0(DisQ) = Q, π1(SP) = Ker d, it follows from Theorem 7 and Proposi-
tion 1 that there is a bijection

ExtB→D(Q,B, ψ) ↔ H2(Q,Kerd). �

Remark 2. Theorem 8 contains Proposition 8.3, Ch. IV [10]. Indeed, for the

crossed module B
µ
→ Aut(B) one can see that ψ : Q → Aut(B)/ In(B) and
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Kerµ = Z(B), hence each extension of the type of this crossed module is an
ordinary group extension of B by Q. Thus, Ext(Q,B, ϕ) ↔ H2(Q,Z(B)).

Remark 3. If the homomorphism d of the crossed module M is an injection,
then the diagram (3) shows that the extension (E : B → E → Q) is obtained
from one (D : B → D → Cokerd) via ψ, that means E = Dψ (see [10]). Since
Ker d = 0, from Theorem 7 one gets the following well-known result.

Corollary 9. Let (D : B → D → C) be a group extension and ψ : Q → C
is a group homomorphism. Then, the extension Dψ exists and it is uniquely

defined up to equivalence.
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