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ON NONSMOOTH OPTIMALITY THEOREMS FOR ROBUST

OPTIMIZATION PROBLEMS

Gue Myung Lee and Pha.m Tiến So.n

Abstract. In this paper, we prove a necessary optimality theorem for a
nonsmooth optimization problem in the face of data uncertainty, which is
called a robust optimization problem. Recently, the robust optimization
problems have been intensively studied by many authors. Moreover, we
give examples showing that the convexity of the uncertain sets and the
concavity of the constraint functions are essential in the optimality the-
orem. We present an example illustrating that our main assumptions in
the optimality theorem can be weakened.

1. Introduction

Let X be a Banach space, and let functions f, gi : X → R, i = 1, . . . ,m be
given. Consider the following optimization problem with inequality constraints:

(P) inf{f(x) | gi(x) ≤ 0, i = 1, . . . ,m}.

This problem in the face of data uncertainty in the constraints can be written
by the following optimization problem:

(UP) inf{f(x) | gi(x, vi) ≤ 0, i = 1, . . . ,m},

where vi is an uncertain parameter and vi ∈ Vi for some sequentially compact
topological space Vi and gi : X × Vi → R is a function. Robust optimization,
which has emerged as a powerful deterministic approach for studying opti-
mization problems under uncertainty [3, 5, 6, 7], associates with the uncertain
program (UP) its robust counterpart [2, 4, 16],

(RP) inf{f(x) | gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m},
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where the uncertain constraints are enforced for every possible value of the
parameters within their prescribed uncertainty sets Vi, i = 1, . . . ,m. The
problem (RP) can be understood as the robust case (the worst case) of (UP).
So optimizing (UP) with (RP) can be regarded as the robust approach (worst
approach) for (UP). For the importance of practical view, many authors have
intensively studied robust optimization [2-7, 14-17, 19]. Very recently, Jeyaku-
mar, Li and Lee [17] proved a differentiable Karush-Kuhn-Tucker (KKT for
short) optimality theorem for (RP) when involved functions in (RP) are con-
tinuously differentiable. The aim of this paper is to extend the KKT optimality
theorem in [17] to a nonsmooth and robust optimization problem and to give
examples to show that some assumptions in our KKT optimality theorem are
essential for getting an uncertain vector vi of the uncertain set of (RP) in the
theorem.

In this paper, we give a nonsmooth KKT optimality theorem for (RP) when
involved functions in (RP) are locally Lipschitz and to present examples show-
ing that the convexity assumption of the uncertain sets and the concavity
assumption of the constraint functions are essential for our KKT optimality
theorem for (RP). Moreover, we give an example illustrating that the assump-
tions in the nonsmooth KKT optimality theorem can be weakened.

The paper is organized as follows. In Section 2, we recall some basic prop-
erties of the generalized gradient for the locally Lipschitz function and prove
useful results on generalized gradients for constraint functions (see Theorem
2.2). In Section 3, we state and prove optimality theorems in Karush-Kuhn-
Tucker formulations for (RP). Some two counter-examples for our robust KKT
necessary optimality theorem and an illustrating example for an extension of
the theorem are given in Section 4.

2. Preliminaries

2.1. Generalized gradients

Let U be an open subset of a Banach space X, and let a function f : U → R

be given. We shall suppose that f is Lipschitz on U ; i.e., that for some constant
L > 0, for all x and y in U, we have

|f(x)− f(y)| ≤ L‖x− y‖.

Definition 2.1. For each d ∈ X, the generalized directional derivative of f at
x in the direction d, denoted f0(x; d), is given by

f0(x; d) = lim sup
h→0, t→0+

f(x+ h+ td)− f(x+ h)

t

(Here of course h belongs to X and t to (0,∞)).
We also shall denote the usual one-sided directional derivative of f at x by

f ′(x; d). Thus

f ′(x; d) = lim
t→0+

f(x+ td)− f(x)

t
,
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whenever this limit exists.
In the sequel, X∗ denotes the (continuous) dual space of X and 〈·, ·〉 is the

duality pairing between X and X∗. The norm of an element ξ of X∗, denoted
‖ξ‖∗, is given by

‖ξ‖∗ := sup{〈ξ, d〉 | d ∈ X, ‖d‖ ≤ 1}.

However, all statements involving a topology on X∗ are with respect to the
weak∗ topology, unless otherwise stated.

Definition 2.2. The generalized gradient of f at x, denoted by ∂f(x), is the
(nonempty) set of all ξ in X∗ satisfying the following condition

f0(x; d) ≥ 〈ξ, d〉 for all d ∈ X.

The following theorem summarizes some fundamental results in the calculus
of generalized gradients (for more details, see [8, 9, 10, 11, 18]).

Theorem 2.1. The following statements hold:

(i) ∂f(x) is a nonempty, convex, weak∗ compact subset of X∗ and ‖ξ‖∗ ≤
L for every ξ in ∂f(x).

(ii) The function d 7→ f0(x; d) is convex and satisfies

|f0(x; d)| ≤ L‖d‖.

(iii) For every d in X, one has

f0(x; d) = max{〈ξ, d〉 | ξ ∈ ∂f(x)}.

(iv) Let ψ : U → R be another locally Lipschitz function. Then

∂(f + ψ) ⊂ ∂f + ∂ψ.

2.2. Max functions

In this subsection, we study the generalized gradient of a type of function
which is important in optimization.

Let V be a sequentially compact topological space, and let U be an open
subset of a Banach space X. Suppose that we are given a function g : U ×V →
R, (x, v) 7→ g(x, v), satisfying the following conditions:

Assumptions

(A1) g(x, v) is upper semicontinuous in (x, v).
(A2) g is Lipschitz in x, uniformly for v in V ; i.e., for some L > 0, for all

x, y ∈ U and v ∈ V , one has

|g(x, v)− g(y, v)| ≤ L‖x− y‖.

(A3) g0x(x, v; ·) = g′x(x, v; ·), the derivatives being with respect to x.
(A4) the generalized gradient ∂xg(x, v) with respect to x is weak∗ upper

semicontinuous in (x, v).
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Remark 2.2. In a suitable setting, assumptions (A2), (A3), and (A4) will follow
if the function g is convex in x and continuous in v. These conditions on the
function g also hold when the derivative ∇xg(x, v) with respect to x exists and
is continuous in (x, v).

We define a function ψ : U → R via

ψ(x) := max{g(x, v) | v ∈ V},

and we observe that our assumptions (A1)-(A4) imply that ψ is defined and
finite (with the maximum defining ψ attained) on U. It also follows readily that
ψ is Lipschitz on U (of rank L), since each g(·, v) is.

Let

V(x) := {v ∈ V | g(x, v) = ψ(x)}.

It is easy to see that V(x) is nonempty and closed for each x in U.
The following lemma, which is a nonsmooth version of Danskin’s theorem for

max-functions, makes connection between the functions ψ′(x; d) and g0x(x, v; d).

Lemma 2.3. Under the assumptions (A1)-(A4), the usual one-sided directional

derivative ψ′(x; d) exists, and satisfies

ψ′(x; d) = ψ0(x; d) = max{g0x(x, v; d) | v ∈ V(x)}

= max{〈ξ, d〉 | ξ ∈ ∂xg(x, v), v ∈ V(x)}.

Proof. See [10, Theorem 2] (see also [8, Theorem 2.1], [12]). �

The following result will be useful in our later analysis.

Theorem 2.4. In addition to the basic assumptions (A1)-(A4), suppose that V
is convex, and that g(x, ·) is concave on V , for each x ∈ U. Then the following

statements hold

(i) The set V(x) is convex and sequentially compact.

(ii) The set

∂xg(x,V(x)) := {ξ | ∃v ∈ V(x) such that ξ ∈ ∂xg(x, v)}

is convex and weak∗ compact.

(iii) ∂ψ(x) = {ξ | ∃v ∈ V(x) such that ξ ∈ ∂xg(x, v)}.

Proof. (i) The set V(x) is convex. In fact, let v1, v2 ∈ V(x) ⊂ V and
α ∈ (0, 1). Then αv1 + (1 − α)v2 ∈ V and g(x, v1) = g(x, v2) = ψ(x). As the
function g(x, ·) is concave, we see that

ψ(x) ≥ g(x, αv1 + (1− α)v2) ≥ αg(x, v1) + (1− α)g(x, v2) = ψ(x).

Therefore g(x, αv1 + (1− α)v2) = ψ(x), and so αv1 + (1− α)v2 ∈ V(x).

The set V(x) is sequentially compact. Suppose that we have a sequence
of points vk ∈ V(x) ⊂ V , k ≥ 1. We may assume that vk converges to some
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v ∈ V , since V is sequentially compact. Then, by definition, g(x, vk) = ψ(x)
for all k ≥ 1. As g(x, ·) is upper semicontinuous, we see that

ψ(x) = lim
k→∞

g(x, vk) ≤ g(x, v) ≤ ψ(x).

Consequently, g(x, v) = ψ(x), and so v ∈ V(x).

(ii) For short, let us denote

Γ := {ξ | ∃v ∈ V(x) such that ξ ∈ ∂xg(x, v)}.

The set Γ is convex. In fact, let ξ1, ξ2 ∈ Γ and α ∈ (0, 1). Then, by
the definition, there exist v1, v2 ∈ V(x) such that ξ1 ∈ ∂xg(x, v

1) and ξ2 ∈
∂xg(x, v

2). By Item (i), the set V(x) is convex. Hence αv1 + (1− α)v2 ∈ V(x).
Note that

g(x, αv1 + (1− α)v2) = ψ(x) = g(x, v1) = g(x, v2)

= αg(x, v1) + (1− α)g(x, v2).

Therefore, we have for any d ∈ X,

g0x(x, αv
1 + (1− α)v2; d)

= g′x(x, αv
1 + (1− α)v2; d)

= lim
t→0+

g(x+ td, αv1 + (1− α)v2)− g(x, αv1 + (1− α)v2)

t

≥ lim
t→0+

αg(x+ td, v1) + (1− α)g(x + td, v2)− αg(x, v1)− (1− α)g(x, v2)

t

= α lim
t→0+

g(x+ td, v1)− g(x, v1)

t
+ (1− α) lim

t→0+

g(x+ td, v2)− g(x, v2)

t

= αg′x(x, v
1; d) + (1 − α)g′x(x, v

2; d)

= αg0x(x, v
1; d) + (1 − α)g0x(x, v

2; d)

≥ α〈ξ1, d〉+ (1− α)〈ξ2, d〉

= 〈αξ1 + (1 − α)ξ2, d〉.

By the definition of the generalized gradient, then

αξ1 + (1− α)ξ2 ∈ ∂xg(x, αv
1 + (1− α)v2).

Thus αξ1 + (1− α)ξ2 ∈ Γ, and so the set Γ is convex.

The set Γ is weak∗ compact. We first prove that Γ is closed. In fact,
let ξk ∈ Γ, k ≥ 1, be a sequence weak∗ converging to ξ in X∗. Then, by the
definition, there exists vk ∈ V(x) such that ξk ∈ ∂xg(x, v

k). Since the set V(x)
is sequentially compact, without lost of generality, we may assume that vk

converges to v ∈ V(x). It follows from Assumption (A4) that ξ ∈ ∂xg(x, v) and
so ξ ∈ Γ. Hence Γ is weak∗ closed.
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Now it follows from Assumption (A2) that

|g0x(x, v; d)| ≤ lim sup
h→0, t→0+

∣

∣

∣

∣

g(x+ h+ td, v)− g(x+ h, v)

t

∣

∣

∣

∣

≤ L‖d‖, ∀v ∈ V , ∀d ∈ X.

By the definition of the generalized gradient, we get

‖ξ‖ ≤ L, ∀ξ ∈ ∂xg(x, v) and ∀v ∈ V .

This inequality, together with Alaoglu’s theorem, implies that Γ is weak∗ com-
pact.

(iii) We first prove the inclusion

Γ ⊂ ∂ψ(x).

In fact, we have for any v ∈ V(x) and d ∈ X,

g0x(x, v; d) = g′x(x, v; d) = lim
t→0+

g(x+ td, v)− g(x, v)

t

≤ lim sup
t→0+

ψ(x+ td)− ψ(x)

t
≤ ψ0(x; d).

By Theorem 2.1(iii), therefore

〈ξ, d〉 ≤ ψ0(x; d) for all ξ ∈ ∂xg(x, v).

Consequently, we derive

Γ ⊂ ∂ψ(x).

Now we prove the inverse inclusion. Let ξ belong to ∂ψ(x); that is

ψ0(x; d) ≥ 〈ξ, d〉 for all d ∈ X.

We deduce from Lemma 2.3 that

max{〈η, d〉 | η ∈ ∂xg(x, v), v ∈ V(x)} = ψ0(x; d) ≥ 〈ξ, d〉 for all d ∈ X.

Consequently,

max{〈η − ξ, d〉 | η ∈ ∂xg(x, v), v ∈ V(x)} ≥ 0 for all d ∈ X.

In particular, we get

inf
‖d‖≤1

max
η∈Γ

〈η − ξ, d〉 ≥ 0.

By Item (ii), the set Γ is convex and weak∗ compact. Next we apply the “lop-
sided” minimax theorem (see, for example, [1]) to deduce the existence of an
element η̄ of Γ such that

inf
‖d‖≤1

〈η̄ − ξ, d〉 = inf
‖d‖≤1

max
η∈Γ

〈η − ξ, d〉 ≥ 0.

Note that

inf
‖d‖≤1

〈η̄ − ξ, d〉 = −‖η̄ − ξ‖∗.
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Therefore,

−‖η̄ − ξ‖∗ = inf
‖d‖≤1

max
η∈Γ

〈η − ξ, d〉 ≥ 0,

which implies that η̄ = ξ, and we obtain the inclusion ∂ψ(x) ⊂ Γ. �

3. Necessary conditions for optimality in Lagrange multiplier form

3.1. Necessary optimality theorems

Let X be a Banach space, and let f, ψi : X → R, i = 1, . . . ,m, be locally
Lipschitz functions. We consider the following nonsmooth optimization prob-
lem:

(P) Minimize f(x)

subject to ψi(x) ≤ 0, i = 1, . . . ,m.

Let

C := {x ∈ X | ψi(x) ≤ 0, i = 1, . . . ,m}

be the constrain set of the problem (P).

Definition 3.1. We say that x∗ is a local minimizer of (P) if x∗ ∈ C and
there exists a neighbourhood U of x∗ such that for all x ∈ C ∩ U, one has
f(x) ≥ f(x∗).

Let us decompose I := {1, . . . ,m} into two index sets I = I1(x) ∪ I2(x),
where I1(x) = {i ∈ I | ψi(x) = 0} and I2(x) = I \ I1(x).

The first optimality relation in general form is the following. This result is
in the spirit of those of J. B. Hiriart-Urruty [13]:

Theorem 3.1. If x∗ ∈ C is a local minimizer of (P), then the following system
{

f0(x∗; d) < 0,

ψ0
i (x

∗; d) < 0, ∀i ∈ I1(x
∗),

has no solution d ∈ X.

Proof. Suppose not, then there exists d ∈ X such that

f0(x∗; d) < 0 and ψ0
i (x

∗; d) < 0, ∀i ∈ I1(x
∗).

We have

lim sup
t→0+

f(x∗ + td)− f(x∗)

t
≤ lim sup

h→0, t→0+

f(x∗ + h+ td)− f(x∗ + h)

t

= f0(x∗; d) < 0

(Note that the function f is locally Lipschitz). By definition of upper limit,
there exists a sequence tk > 0 with limk→∞ tk = 0 such that

lim
k→∞

f(x∗ + tkd)− f(x∗)

tk
= lim sup

t→0+

f(x∗ + td)− f(x∗)

t
< 0.
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Consequently, there exists an integer number K1 > 0 such that

f(x∗ + tkd) < f(x∗), ∀k ≥ K1.

On the other hand, we have for all i ∈ I1(x
∗),

lim sup
k→∞

ψi(x
∗ + tkd)− ψi(x

∗)

tk
≤ lim sup
h→0, t→0+

ψi(x
∗ + h+ td)− ψi(x

∗ + h)

t

= ψ0
i (x

∗; d) < 0.

Then there exists an integer number K2 > 0 such that

ψi(x
∗ + tkd) < ψi(x

∗) = 0, ∀i ∈ I1(x
∗) and ∀k ≥ K2.

Moreover, as ψi(x
∗) < 0 for all i ∈ I2(x

∗), we see that there exists an integer
number K3 > 0 such that

ψi(x
∗ + tkd) < 0, ∀i ∈ I2(x

∗) and ∀k ≥ K3.

Therefore, x∗ + tkd ∈ C for all k ≥ max{K1,K2,K3}, which contradicts the
optimality of x∗. �

Definition 3.2. We define a Nonsmooth Mangasarian-Fromovitz constraint

qualification (NMFCQ) at x ∈ C as follows:

∃d ∈ X such that ψ0
i (x; d) < 0, ∀i ∈ I1(x).

The following result is a necessary condition for optimality in Lagrange mul-
tiplier form originally due to Clarke [9]. But by using Theorem 3.1, we give
self-contained proof for the result.

Theorem 3.2. Let x∗ ∈ C be a local minimizer of (P). Then, there exist

λi ≥ 0, i = 0, . . . ,m, with
∑m

i=0 λi = 1, such that

0 ∈ λ0∂f(x
∗) +

m
∑

i=1

λi∂ψi(x
∗),

0 = λiψi(x
∗), i = 1, . . . ,m.

Moreover, if we further assume that the Nonsmooth Mangasarian-Fromovitz

constraint qualification (NMFCQ) at x∗ holds, then

0 ∈ ∂f(x∗) +

m
∑

i=1

λi∂ψi(x
∗),

0 = λiψi(x
∗), i = 1, . . . ,m.

Proof. As x∗ ∈ C is a local minimizer of (P), there exists a neighbourhood U
of x∗ such that

ψi(x) ≤ 0, i = 1, . . . ,m, x ∈ U, =⇒ f(x) ≥ f(x∗).

Note that if I1(x
∗) = ∅, then ψi(x

∗) < 0 for all i = 1, . . . ,m, and so the
theorem holds with λ0 = 1 and λi = 0, i = 1, . . . ,m.

Without lost of generality, we may assume that I1(x
∗) 6= ∅.
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In view of Theorem 2.1(ii), the functions d 7→ f0(x∗; d) and d 7→ ψ0
i (x

∗; d)
are convex. By Theorem 3.1, it follows from Gordan’s alternative theorem in
[20] that there exist λ0 ≥ 0 and λi ≥ 0, i ∈ I1(x

∗), not all zero, such that

λ0f
0(x∗; d) +

∑

i∈I1(x∗)

λiψ
0
i (x

∗; d) ≥ 0, for all d ∈ X.

It is immediate from Theorems 2.1(iii) that

λ0 max{〈ξ0, d〉 | ξ0 ∈ ∂f(x∗)}

+
∑

i∈I1(x∗)

λimax{〈ξi, d〉 | ξi ∈ ∂ψi(x
∗)} ≥ 0 for all d ∈ X.

Hence

max
ξ0∈∂f(x

∗)
ξi∈∂ψi(x

∗)

〈λ0ξ0 +
∑

i∈I1(x∗)

λiξi, d〉 ≥ 0, for all d ∈ B,

where B := {d ∈ X | ‖d‖ ≤ 1} is the unit ball of X. This is equivalent to

inf
d∈B

max
ξ0∈∂f(x

∗)
ξi∈∂ψi(x

∗)

〈λ0ξ0 +
∑

i∈I1(x∗)

λiξi, d〉 ≥ 0.

On the other hand, by Theorem 2.1(i), the sets ∂f(x∗) and ∂ψi(x
∗) are

convex and weak∗ compact. Hence, by the “lop-sided” minimax theorem (see,
for example, [1]), there exist elements ξ̄0 ∈ ∂f(x∗) and ξ̄i ∈ ∂ψi(x

∗), i ∈ I1(x
∗),

such that

inf
d∈B

〈λ0ξ̄0 +
∑

i∈I1(x∗)

λiξ̄i, d〉 = max
ξ0∈∂f(x

∗)
ξi∈∂ψi(x

∗)

inf
d∈B

〈λ0ξ0 +
∑

i∈I1(x∗)

λiξi, d〉 ≥ 0.

Note that

inf
d∈B

〈λ0ξ̄0 +
∑

i∈I1(x∗)

λiξ̄i, d〉 = −‖λ0ξ̄0 +
∑

i∈I1(x∗)

λiξ̄0‖
∗

Therefore,

−‖λ0ξ̄0 +
∑

i∈I1(x∗)

λiξ̄0‖
∗ = max

ξ0∈∂f(x
∗)

ξi∈∂ψi(x
∗)

inf
d∈B

〈λ0ξ0 +
∑

i∈I1(x∗)

λiξi, d〉 ≥ 0.

Consequently, −‖λ0ξ̄0 +
∑

i∈I1(x∗) λiξ̄0‖
∗ = 0, and we get

0 ∈ λ0∂f(x
∗) +

∑

i∈I1(x∗)

λi∂ψi(x
∗).

Thus, by letting λi := 0 for all i ∈ I2(x
∗), we see that

0 ∈ λ0∂f(x
∗) +

m
∑

i=1

λi∂ψi(x
∗),

0 = λiψi(x
∗), i = 1, . . . ,m.
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We now assume that the Nonsmooth Mangasarian-Fromovitz constraint
qualification (NMFCQ) at x∗ holds. Then λ0 > 0. In fact, if it is not true
then λi ≥ 0, i ∈ I1(x

∗), not all zero, and

0 ∈
∑

i∈I1(x∗)

λi∂ψi(x
∗) ⊂ ∂





∑

i∈I1(x∗)

λiψi



 (x∗)

(The second relation follows from Theorem 2.1(iv)). Consequently,
∑

i∈I1(x∗)

λiψ
0
i (x

∗; d) ≥ 0, for all d ∈ X,

which contradicts (NMFCQ). Hence we may assume that λ0 = 1, and so

0 ∈ ∂f(x∗) +

m
∑

i=1

λi∂ψi(x
∗),

0 = λiψi(x
∗), i = 1, . . . ,m.

�

3.2. Robust necessary optimality theorems

Consider the following nonsmooth robust optimization problem:

(RP) Minimize f(x)

subject to gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m,

where f : X → R is a locally Lipschitz function, and gi : X × Vi → R is a
function satisfying Assumptions (A1)-(A4) in Subsection 2.2 with respect to a
sequentially compact topological space Vi. Let

C := {x ∈ X | gi(x, vi) ≤ 0, ∀vi ∈ Vi, i = 1, . . . ,m}

be the constrained set of the problem (RP).

Definition 3.3. We say that x∗ is a robust local minimizer of (RP) if x∗ ∈ C
and there exists a neighbourhood U of x∗ such that for all x ∈ C ∩ U, one has
f(x) ≥ f(x∗).

For each i = 1, . . . ,m, let ψi : X → R be the function given by

ψi(x) := max{gi(x, vi) | vi ∈ Vi}.

Then it is clear that

C = {x ∈ X | ψi(x) ≤ 0, i = 1, . . . ,m}.

Let us decompose I := {1, . . . ,m} into two index sets I = I1(x) ∪ I2(x),
where I1(x) = {i ∈ I | ψi(x) = 0} and I2(x) = I \ I1(x). For each i ∈ I1(x) we
put

Vi(x) := {vi ∈ Vi | gi(x, vi) = ψi(x)}.
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Now we define an Extended Nonsmooth Mangasarian-Fromovitz constraint

qualification (ENMFCQ) at x ∈ C as follows:

∃d ∈ X such that g0ix(x, vi; d) < 0, ∀vi ∈ Vi(x), ∀i ∈ I1(x),

where g0ix(x, vi; d) denotes the generalized directional derivative of gi with re-
spect to x.

The following result is a nonsmooth generalization of robust KKT necessary
optimality theorem originally due to Jeyakumar, Li and Lee [17].

Theorem 3.3. In addition to the basic assumptions (A1)-(A4), suppose that

Vi is convex, and that the function gi(x, ·) is concave on Vi, for each x ∈ X

and for each i = 1, . . . ,m. If x∗ ∈ C be a robust local minimizer of (RP), then
there exist vi ∈ Vi(x∗) and λi ≥ 0, i = 1, . . . ,m, with

∑m
i=0 λi = 1, such that

0 ∈ λ0∂f(x
∗) +

m
∑

i=1

λi∂xgi(x
∗, vi),

0 = λigi(x
∗, vi), i = 1, . . . ,m.

Moreover, if we further assume that the Extended Nonsmooth Mangasarian-

Fromovitz constraint qualification (ENMFCQ) at x∗ holds, then

0 ∈ ∂f(x∗) +

m
∑

i=1

λi∂xgi(x
∗, vi),

0 = λigi(x
∗, vi), i = 1, . . . ,m.

Proof. By Theorem 3.2, there exist λi ≥ 0, i = 0, . . . ,m, with
∑m
i=0 λi = 1,

such that

0 ∈ λ0∂f(x
∗) +

m
∑

i=1

λi∂ψi(x
∗),

0 = λiψi(x
∗), i = 1, . . . ,m.

On the other hand, it follows from Theorem 2.4(iii) that

∂ψi(x
∗) = {ξi | ∃vi ∈ Vi(x

∗) such that ξi ∈ ∂xgi(x
∗, vi)}, i = 1, . . . ,m.

Therefore there are vi ∈ Vi(x∗) satisfying the following conditions

0 ∈ λ0∂f(x
∗) +

m
∑

i=1

λi∂xgi(x
∗, vi),

0 = λigi(x
∗, vi), i = 1, . . . ,m.

We now assume that the Extended Nonsmooth Mangasarian-Fromovitz con-
straint qualification (ENMFCQ) at x∗ holds. Then λ0 > 0. In fact, if it is not
true then λi ≥ 0, i ∈ I1(x

∗), not all zero, and

0 ∈
∑

i∈I1(x∗)

λi∂xgi(x
∗, vi) ⊂ ∂x





∑

i∈I1(x∗)

λigi



 (x∗, vi)
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(The second relation follows from Theorem 2.1(iv)). Consequently,
∑

i∈I1(x∗)

λig
0
ix(x

∗, vi; d) ≥ 0, for all d ∈ X,

which contradicts (ENMFCQ). Hence we may assume that λ0 = 1, and so

0 ∈ ∂f(x∗) +

m
∑

i=1

λi∂xgi(x
∗, vi),

0 = λigi(x
∗, vi), i = 1, . . . ,m. �

Remark 3.4. (i) Let us consider the case f(x) := maxv0∈V0
g0(x, v0), where V0

is a sequentially compact topological space and g0 : X × V0 → R is a function.
Then, by the same method in the proof of Theorem 3.3, we get the following:
In addition to the basic assumptions (A1)-(A4), suppose that Vi is convex, and
that gi(x, ·) is concave on Vi, for each x ∈ U, and for each i = 0, 1, . . . ,m. Let
x∗ ∈ C be a robust local minimizer of (RP). Then there exist vi ∈ Vi(x∗) and

λi ≥ 0,
∑m

i=0 λi = 1, such that

0 ∈ λ0∂xg0(x
∗, v0) +

m
∑

i=1

λi∂xgi(x
∗, vi),

0 = λigi(x
∗, vi), i = 1, . . . ,m.

(ii) Theorem 3.3 can be weakened as follows: In addition to the basic as-

sumptions (A1)-(A4), suppose that for each i ∈ I1(x
∗), the set ∂xgi(x

∗,Vi(x∗))
is convex. If x∗ ∈ C is a robust local minimizer of (RP ), then there exist

vi ∈ Vi(x∗) and λi ≥ 0,
∑m

i=1 λi = 1, such that

0 ∈ λ0∂f(x
∗) +

m
∑

i=1

λi∂xgi(x
∗, vi),

0 = λigi(x
∗, vi), i = 1, . . . ,m.

4. Examples

Now we give an example showing that the assumption that Vi is convex is
essential for Theorem 3.3.

Example 4.1. Let x := (x1, x2) ∈ R
2 and v := (v1, v2) ∈ V := {v ∈ R

2 | v21 +
v22 = 1, v1 ≤ 0 or v2 ≤ 0}. It is clear that the set V is non-convex. Consider
the functions

f(x) := −x1 − x2,

g(x, v) := x1v1 + x2v2 − 1.

Let

C := {x ∈ R
2 | ψ(x) ≤ 0},
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where

ψ(x) := max
v∈V

g(x, v) =











‖x‖ − 1 if x1 ≤ 0 or x2 ≤ 0,

x2 − 1 if 0 ≤ x1 ≤ x2,

x1 − 1 if 0 ≤ x2 ≤ x1.

Then x∗ := (1, 1) ∈ C is an optimal solution of the problem:

min f(x)
subject to g(x, v) ≤ 0, ∀v ∈ V .

We have V(x∗) = {(1, 0), (0, 1)}.Moreover, it is easy to check that (ENMFCQ)
holds at x∗ and there no exist v ∈ V(x∗) and λ0, λ1 ≥ 0, with λ0+λ1 = 1, such
that

λ0∇f(x
∗) + λ1∇xg(x

∗, v) = 0,

λ1g(x
∗, v) = 0.

where ∇xg(x, v) denotes the gradient of g with respect to x.

Also, we present an example illustrating that the assumption that gi(x, ·) is
concave is necessary for Theorem 3.3.

Example 4.2. Let x := (x1, x2) ∈ R
2 and v ∈ V := [π2 , 2π] ⊂ R. Consider the

functions

f(x) := −x1 − x2

g(x, v) := x1 cos v + x2 sin v − 1.

It is clear that g(x, ·) is not concave, if (x1, x2) = (1, 0).
Let

C := {x ∈ R
2 | ψ(x) ≤ 0},

where

ψ(x) := max
v∈V

g(x, v) =











‖x‖ − 1 if x1 ≤ 0 or x2 ≤ 0,

x2 − 1 if 0 ≤ x1 ≤ x2,

x1 − 1 if 0 ≤ x2 ≤ x1.

Then x∗ := (1, 1) ∈ C is an optimal solution of the problem:

min f(x)
subject to g(x, v) ≤ 0, ∀v ∈ V .

We have V(x∗) = {π2 , 2π}. Moreover, it is easy to check that (ENMFCQ) holds
at x∗ and there no exist v ∈ V(x∗) and λ0, λ1 ≥ 0, with λ0 + λ1 = 1, such that

λ0∇f(x
∗) + λ1∇xg(x

∗, v) = 0,

λ1g(x
∗, v) = 0.

Now we give an example illustrating Remark 3.4(ii). Here it is worth while
noticing that the function g(x, ·) in the example is not concave.
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Example 4.3. Let x := (x1, x2) ∈ R
2 and v ∈ V := [0, 2π] ⊂ R. Consider the

functions

f(x) := −x1

g(x, v) := x1 cos v + x2 sin v − 1.

It is clear that g(x, ·) is not concave, if (x1, x2) = (1, 0).
Let

C := {x ∈ R
2 | ψ(x) ≤ 0},

where
ψ(x) := max

v∈V
g(x, v) = ‖x‖ − 1.

Then x∗ := (1, 0) ∈ C is an optimal solution of the problem:

min f(x)
subject to g(x, v) ≤ 0, ∀v ∈ V .

We have V(x∗) = {0, 2π} and ∇xg(x
∗,V(x∗)) = {(1, 0)}. Moreover, it is easy

to check that (ENMFCQ) holds at x∗ and if we let λ0 = λ1 := 1
2 then

λ0∇f(x
∗) + λ1∇xg(x

∗, v) = 0,

λ1g(x
∗, v) = 0.

for all v ∈ V(x∗).
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