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HYBRID d-ARY TREES AND THEIR GENERALIZATION

SeoungJi Hong and SeungKyung Park

Abstract. We enumerate black and white colored d-ary trees with no
leftmost -edges, which is a generalization of hybrid binary trees. Then
the multi-colored hybrid d-ary trees with the same condition is studied.

1. Introduction

In 1994, J. Pallo [3] introduced hybrid binary trees as equivalence classes
with respect to associative property of internal nodes, which was to construct an
easier data process in computer systems. Mansour et al. [1] in 2008 mentioned
that -free two colored binary trees are hybrid binary trees, and considered
several types of “X-free” bicolored binary trees and enumerated them. In 2009,
Panholzer and Prodinger [4] studied d-ary trees with no rightmost -edges and
found a closed formula as a generalized Catalan numbers. They also enumerate
k colored d-ary trees with {1, 2, . . . , k} colors, where there is no internal vertex
i of the rightmost child j with i > j. There are some other results on special
cases of two colored binary trees [2] and [6].

We examined J. Pallo’s [3] hybrid binary trees with associativity property
and found that it could be generalized to the hybrid d-ary trees with a simple
representation rather than the associativity. We also consider coloring vertices
with more than two colors for the hybrid d-ary trees. We remark Pallo’s hybrid
binary trees on the last section.

In this paper we first study two colored d-ary trees with no leftmost -
edges for d ≥ 1 and enumerate them. In the section 3 the multi-colored d-
ary trees with set {1, 2, . . . , p + q} of colors, with no leftmost (i, i)-edges for
i ∈ {1, 2, . . . , p} is also studied and enumerated.

2. Hybrid d-ary trees

We define hybrid trees as follows:
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Definition 2.1. A hybrid d-ary tree is a d-ary tree where every internal vertex
is labeled with either 1 or 2 and every leaf with 0, but with no leftmost (1, 1)-
labeled edges, i.e., an edge consisted of 1 labeled internal vertex with 1 labeled
leftmost child of it.

By applying the preorder traversal (i.e., visit the root and then visit subtrees
from left to right) to a hybrid d-ary tree we obtain a word of alphabet {0, 1, 2}.
We say the subword separated by 0’s a block. Then we have the following
proposition derived straightforwardly from the definition.

Proposition 2.2. Every block of a hybrid d-ary tree is a Fibonacci word which

is a word of {1, 2} with no consecutive 1’s.

Example 2.3. Consider the following hybrid ternary tree (Red numbered
edges will be used for decomposition in the next example).

Figure 1. A hybrid ternary tree

By the preorder traversal we obtain the word

120 220 0 0 0 120 0 0 0 0 0 10 0 20 20 0 0 0 10 0 0,

where each block, the word separated by 0, is a Fibonacci word of {1, 2}.

By replacing every 1 by black color and every 2 by white in a hybrid d-ary
tree, we have the -free d-ary tree. If we switch the colors or the left-right
order of the children we have the same number of -free d-ary trees, -free
d-ary trees, -free d-ary trees, and -free d-ary trees.

We now consider factorizing hybrid d-ary trees to obtain a functional relation
of a generating function for the hybrid trees as follows:
For the decomposition of a hybrid d-ary tree with n internal vertices we take
the following steps:

(1) Apply the preorder traversal.
(2) Every time the traversal reads the rightmost edge of an internal vertex,

remove the edge and the subtree attached below it, if there is.
(3) Arrange the removed subtrees from Step (2) in a row from left to right.
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(4) If the traversal is over, stop.

Then the output is a sequence of a hybrid (d − 1)-ary tree followed by right
most edges along with their d-ary subtrees, if there exist. The following figure
shows the decomposition of the ternary tree in Example 2.3.

, , , ,,

Figure 2. Decomposition of a hybrid ternary tree

The recovery is fairly straightforward. While traversing the (d− 1)-ary tree,
every time an internal vertex needs the dth child, take the corresponding edge
with the subtree in the sequence for the child. From this observation we have
the following proposition.

Proposition 2.4. Let hd(x) be a generating function for the number of Hybrid

d-ary trees each of whose internal vertex is weighted by an x for d ≥ 2. Then

the initial condition for d = 1 becomes h1(x) =
∑

n≥0 Fn+1x
n, where Fn is the

nth Fibonacci number (F0 = F1 = 1). We also have

hd(x) = hd−1(xhd(x))

= h1(x · hd(x)
d−1).

Proof. Since the decomposition of hybrid d-ary tree T is unique, we can express
the decomposition as

T0, e1T1, e2T2, . . . , ekTk,

where T0 is a hybrid (d − 1)-ary tree with k internal vertices and eiTi’s are
ith removed rightmost edges in traversal along with Ti hybrid d-ary subtrees,
if there is. From the recovery process, the hybrid d-ary tree is obtained by
attaching hybrid d-ary subtrees eiTi’s into the internal vertices of T0 as the
rightmost children. In other words, we get hd(x) = hd−1(xhd(x)), which gives
by iterating the equation h1(x · hd(x)

d−1). �

By Proposition 2.4 and the Lagrange Inversion Formula we obtain the fol-
lowing theorem.

Theorem 2.5. The number of hybrid d-ary trees with n internal vertices is

1

(d− 1)n+ 1

n
∑

i=0

(

(d− 1)n+ i

i

)(

(d− 1)n+ i+ 1

n− i

)

.
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Proof. From the above Proposition 2.4, we have hd(x) = h1(x(hd(x))
d−1), and

taking (d− 1)-th powers yields

x(hd(x))
d−1 = x

(

h1(x(hd(x))
d−1)

)d−1
.

Let f = x(hd(x))
d−1, we have f = x(h1(f))

d−1. Applying Lagrange Inversion
Formula (LIF) [Chap 5. in [5]],

[xn]hd(x) = [xn]h1(f(x))

=
1

n
[xn−1]h′

1(x) (h1(x))
(d−1)n

=
1

n
[xn−1]

(

h1(x)
(d−1)n+1

(d− 1)n+ 1

)′

=
1

(d− 1)n+ 1
[xn] (h1(x))

(d−1)n+1

=
1

(d− 1)n+ 1
[xn]

(

x+ 1

1− x− x2

)(d−1)n+1

=
1

(d− 1)n+ 1
[xn](x+ 1)(d−1)n+1

∑

l≥0

(

(d− 1)n+ l

l

)

xl(1 + x)l

=
1

(d− 1)n+ 1

n
∑

i=0

(

(d− 1)n+ i

i

)(

(d− 1)n+ i+ 1

n− i

)

where [xn]g(x) is the coefficient of xn in g(x). �

Example 2.6. The generating function h3(x) for the hybrid ternary trees is

h3(x) = h1(xh3(x)
2)

=
∑

n≥0

Fn+1 · x · h3(x)
2.

Thus we have

x2h3(x)
5 + xh3(x)

3 + xh3(x)
2 − h3(x) − 1 = 0.

Therefore, the number of the hybrid ternary trees with n internal vertices
becomes

1

2n+ 1

n
∑

i=0

(

2n+ i

i

)(

2n+ i+ 1

n− i

)

.

The following table shows first few values of the coefficients of xn in hd(x).
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dk(n) n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 OEIS
d = 1 1 2 3 5 8 13 21 A000045
d = 2 1 2 7 31 154 820 4575 A007863
d = 3 1 2 11 81 684 6257 60325 A215654
d = 4 1 2 15 155 1854 24124 331575 -
d = 5 1 2 19 253 3920 66221 1183077 -
d = 6 1 2 23 375 7138 148348 3262975 -

3. The (p, q)-hybrid d-ary trees

We generalize hybrid d-ary trees further by considering more labelings.

Definition 3.1. A (p, q)-hybrid d-ary tree is a d-ary tree where every internal
vertex is labeled with {1, 2, . . . , p + q} and every leaf with 0, but with no
leftmost (i, i)-labeled edges for i ∈ {1, 2, . . . , p}, i.e., there is no edge consisted
of i labeled internal vertex with i labeled leftmost child of it.

By applying the preorder traversal again to a (p, q)-hybrid d-ary tree we
obtain a word of alphabet {0, 1, 2, . . . , p+ q}. We still use a block for a subword
separated by 0’s. Then the (p, q)-hybrid d-ary trees have the following property
from Definition 3.1.

Proposition 3.2. Every block of a (p, q)-hybrid d-ary tree is a (p, q)-generalized
Fibonacci word, which is a word of {1, 2, . . . , p+ q} with no consecutive i’s for

any element i ∈ {1, 2, . . . , p}.

Let Gp,q(n) be the set of all (p, q)-generalized Fibonacci words of length n

and let gp,q(n) be the cardinality of Gp,q(n). Then it is not difficult to see that
the number gp,q(n) satisfies the following recurrence relation for n ≥ 2:

gp,q(n) = (p+ q − 1) · gp,q(n− 1) + q · gp,q(n− 2),

where gp,q(0) = 1 and gp,q(1) = p+ q.
Since the decomposition of a (p, q)-hybrid d-ary tree is uniquely determined

in a similiar fashion as we have seen in the previous section, we get the following
proposition.

Proposition 3.3. Let h
(p,q)
d

(x) be a generating function for the number of

(p, q)-hybrid d-ary trees with n internal vertices for d ≥ 2. For d = 1, we have

the initial condition h
(p,q)
1 (x) =

∑

n≥0 gp,q(n)x
n = 1+x

1−(p+q−1)x−qx2 . Then

qx2 h
(p,q)
d (x)2d−1 + (p+ q − 1)xh

(p,q)
d (x)d + xh

(p,q)
d (x)d−1 − h

(p,q)
d (x) + 1 = 0.

Proof. Since the structure is the same as the hybrid d-ary trees, we have the
following equation.

h
(p,q)
d (x) = h

(p,q)
d−1 (xh

(p,q)
d (x)),

= h
(p,q)
1 (x · h

(p,q)
d (x)d−1).(1)
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That is,

h
(p,q)
d (x) =

1 + x · h
(p,q)
d (x)d−1

1− (p+ q − 1)x · h
(p,q)
d (x)d−1 − qx2 · h

(p,q)
d (x)2d−2

.

Thus

qx2 h
(p,q)
d (x)2d−1 + (p+ q − 1)xh

(p,q)
d (x)d + xh

(p,q)
d (x)d−1 − h

(p,q)
d (x) + 1 = 0.

�

Since h
(p,q)
d (x) = h

(p,q)
1 (xh

(p,q)
d (x)d−1), by taking (d− 1)-th powers and sub-

stitute f = x(h
(p,q)
d (x))d−1, we have f = x(h

(p,q)
1 (f))d−1. By LIF [Chap 5. in

[5]], the number of (p, q)-hybrid d-ary trees with n internal vertices is equal

to 1
(d−1)n+1 times the coefficient of xn in h

(p,q)
1 (x)(d−1)n+1. Thus we have the

following formula.

Theorem 3.4. The number of (p, q)-hybrid d-ary trees with n internal vertices

is

1

(d− 1)n+ 1

n
∑

k=0

k
∑

i=⌈ k

2
⌉

(

(d− 1)n+ 1

n− k

)(

(d− 1)n+ i

i

)(

i

k − i

)

(p+ q − 1)2i−kqk−i.

If p = 1 in Proposition 3.3, then the generating function can be factored
out, which enables us to find the function. In other words:

Corollary 3.5. Let f(x) be a formal power series with f(0) = 1 and f ′(0) =
1 + q for a positive integer q, and satisfy

f(x) = (1 + x f(x)d−1)(1 + q x f(x)d).

Then the coefficient of xn in f(x) is

1

(d− 1)n+ 1

n
∑

k=0

k
∑

i=⌈ k

2
⌉

(

(d− 1)n+ 1

n− k

)(

(d− 1)n+ i

i

)(

i

k − i

)

qi.

Proof. Since h
(1,q)
d satisfy the functional equation f(x) = (1 + x f(x)d−1)(1 +

q x f(x)d), the statement is true. �

Remark 3.6. J. Pallo [3] defined hybrid binary tree with internal vertices in
{a, n} where a denotes for an associative vertices and n for non-associative one.
The associativity of internal vertex a imply to [[T1, a, T2], a, T3] is equivalent
to [T1, a, [T2, a, T3]] where [A, a,B] means A and B are the left and right trees
of internal vertex a. The equivalent classes by associative property in a {a, n}
labelled binary trees is to be defined as hybrid binary trees.

The generalized hybrid d-ary trees is based on the unique decomposition of
(d−1)-ary trees by right most edges of each internal vertices as in Figure 2. By
recursive using decompositions up to each component being a binary tree, the
equivalence classes could be determined by associativity property of internal
vertex a in hybrid binary trees.
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