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GRADIENT RICCI SOLITONS WITH SEMI-SYMMETRY

Jong Taek Cho and Jiyeon Park

Abstract. We prove that a semi-symmetric 3-dimensional gradient Ricci
soliton is locally isometric to a space form S3, H3, R3 (Gaussian soliton);
or a product space R× S2, R×H2, where the potential function depends
only on the nullity.

1. Introduction

A Ricci soliton is a natural generalization of an Einstein metric and is defined
on a Riemannian manifold (M, g) by

(1)
1

2
£V g +Ric−λg = 0,

where V is a vector field (the potential vector field), λ a constant on M . Com-
pact Ricci solitons are the fixed points of the Ricci flow: ∂

∂t
g = −2Ric projected

from the space of metrics onto its quotient modulo diffeomorphisms and scal-
ings, and often arise as blow-up limits for the Ricci flow on compact manifolds.
The Ricci soliton is said to be shrinking, steady, and expanding according as
λ > 0, λ = 0, and λ < 0, respectively. Hamilton [4] and Ivey [5] proved that a
Ricci soliton on a compact manifold has constant curvature in dimension 2 and
3, respectively. If the vector field V = Dh, the gradient of a potential function
h, then g is called a gradient Ricci soliton and equation (1) assumes the form

(2) Hess h+Ric = λg,

Trivial examples are given by Einstein metrics with Hess h = 0. Another
interesting soliton occurs on Euclidean space R

n (with a flat metric). Indeed,
assuming h = λ

2
|x|2 on R

n then we have Hess h = λg. Therefore it yields a
gradient Ricci soliton, which is called a Gaussian soliton. Due to Perelman’s
result (Remark 3.2 in [6]), we find that the potential vector field in a compact
Ricci soliton is written as the sum of a gradient and a Killing vector field. For
details we refer to [3] or [2] about the Ricci flows and their solitons.
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LetR denote its Riemann curvature tensor on a Riemannian manifold (M, g).
Cartan [1] investigatedM satisfying the condition R(X,Y )·R = 0 for all vector
fields X,Y on M . Here the linear endomorphism R(X,Y ) acts as a derivation
on R. Such a Riemannian manifold is called a semi-symmetric space. In dimen-
sion three, Sekigawa [8] proved that a complete and irreducible semi-symmetric
space is of constant curvature if it has a finite volume. Other than locally sym-
metric spaces, the fundamental examples of semi-symmetric spaces are real
cones, Kählerian cones, and spaces foliated by Euclidean spaces of codimen-
sion 2. Their local and global structures are intensively investigated by Szabo
[9], [10].

In the present paper, we prove that a semi-symmetric 3-manifold M admit-

ting a gradient Ricci soliton is locally isometric to one of the following: S3, H3,

R
3; S2×R, or H

2×R, where the potential function depends only on the nullity

distribution for the latter two cases.

All manifolds in the present paper are assumed to be connected and smooth.

2. Ricci solitons with semi-symmetry

First, we remind a result due to Petersen and Wylie [7].

Proposition 1. If a gradient Ricci soliton is Einstein, then Hess h = 0 or it

is a Gaussian soliton.

Now, we prove:

Theorem 2. If a semi-symmetric 3-manifold M admits a gradient Ricci soli-

ton, then M is locally isometric to S
3, H3, R3 (Gaussian soliton) or a product

space M2
1 × R almost everywhere.

Proof. Let (M, g) be a semi-symmetric 3-manifold. Then M satisfies

R(X,Y ) = SX ∧ Y +X ∧ SY − (r/2)X ∧ Y,

where (X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y , Ric(X,Y ) = g(SX, Y ) and r is the
scalar curvature. Let (µ1, µ2, µ3) be eigenvalues of the Ricci operator S at
p ∈ M . Then the semi-symmetry condition R(X,Y ) · R = 0 is equivalent to

(µi − µj)(2(µi + µj)−R) = 0.

This implies only the three cases to be considered (at each point) (cf. [8]):

(µ, µ, µ), (µ, µ, 0), (0, 0, 0).

If there is an open neighborhood U of p with (µ, µ, µ), µ 6= 0 (or (0, 0, 0),
respectively), then we can see that M is Einstein. Then by Proposition 1 we
see that M is a space of constant curvature µ

2
or locally a Gaussian soliton. So,

we now assume the case (µ, µ, 0), µ 6= 0 almost everywhere (in open and dense
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subset inM). Then, there exists a local orthonormal frame field {e0 = u, e1, e2}
around p and a differentiable function µ on M such that

{

R(e1, e2) = µe1 ∧ e2
all others R(ei, ej) being zero,

where e1 ∧ e2 denotes g(·, e2)e1 − g(·, e1)e2. The tangent space TpM at p is
decomposed as follows:

TpM = D0(p)⊕D1(p),

where D1(p) = span
R
{e1, e2} and D0(p) = span

R
{e0}. We put

∇eiej =
∑

k

Bijkek for i, j, k = 0, 1, 2,

where ∇ denotes the Levi-Civita connection. Then we easily see that Bijk =
−Bikj . Moreover, we get

(∇e0R)(e1, e2) = µ0 e1 ∧ e2 + µ(B010e0 ∧ e2 +B020e1 ∧ e0),

(∇e1R)(e2, e0) = µB101e1 ∧ e2,

(∇e2R)(e0, e1) = µB202e1 ∧ e2.

By the second Bianchi identity, we have

(∇e0R)(e1, e2) + (∇e1R)(e2, e0) + (∇e2R)(e0, e1)

=
(

µ0 + µ(B101 +B202)
)

e1 ∧ e2 + µ(B010e0 ∧ e2 +B020e1 ∧ e0) = 0

and it implies that

(3) B001 = B002 = 0

and

(4) µ0 − µ(B110 +B220) = 0.

Thus, from (3) we see that each integral curve of e0 = u is a totally geodesic
leaf. Such a manifold is called a foliated space of totally geodesic leaves and
the class of such manifolds is denoted by FOL3

1.

For the class, we have the Ricci curvature:
{

Ric(e1, e1) = Ric(e2, e2) = µ,
Ric(e1, e2) = Ric(u, ej) = 0.

Suppose that M admits a gradient Ricci soliton with a potential vector field
Dh = h0e0 + h1e1 + h2e2, where hi = g(Dh, ei), i = 0, 1, 2. Then from (2) we
have

(5) g(∇XDh, Y ) + Ric(X,Y )− λg(X,Y ) = 0.

Now, let γ(t) be an integral curve of u through p, i.e., γp(t) = expptu. From
(5) we can derive

(6) R(X,Y )Dh = (∇Y S)X − (∇XS)Y.
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From Se0 = 0, Se1 = µe1 and Se2 = µe2, we compute

(∇e1S)e2 =(e1µ)e2 + µ∇e1e2 − S∇e1e2

=(e1µ)e2 + µB120e0.

We put X = e0 and Y = e1 in (6). Then we have

(µB110 − µ0)e1 + µB120e2 = 0

and it implies that

(7) µB110 = µ0

and

(8) µB120 = 0.

Similarly, putting X = e0 and Y = e2 in (6), we have

µB210e1 + (µB220 − µ0)e2 = 0

and it implies that

(9) µB220 = µ0

and

(10) µB210 = 0.

Hence, from (4), (7) and (9) we have

(11) µ0 = 0,

where µ0 = ∂h
∂t
.

Since µ 6= 0, from (7), (9) and (11) we have B110 = B220 = 0. From (8)
and (10) we also find that B120 = B210 = 0. From those facts we see that each
conullity distributionD1 is integrable and forms a totally geodesic submanifold.
After all, we conclude that M is a local product space of a 1-dimensional R
and a 2-dimensional manifold M2

1 almost everywhere.

Moreover, we put X = Y = e0 in (5). Then we have

∂2h

∂t2
(= h00) = λ.

Hence, in this case, the potential function h is of the form

(12) h(t, x1, x2) =
λ

2
t2 + h̃(x1, x2)t+ ĥ(x1, x2),

where functions h̃ and ĥ depend on (x1, x2). Here, we assume that (x1, x2) is
an isothermal coordinate system on M2

1 , i.e.,

(gij) =





1 0 0
0 r2 0
0 0 r2



 ,
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where {∂i :=
∂

∂xi } is a coordinate basis and r = r(x1, x2) is a positive smooth

function on M2. We denote

∇∂i
∂j =

∑

k

Γijk∂k for i, j, k = 0, 1, 2.

Then we can easily show that

(13)







Γ111 = Γ122 = Γ212 = −Γ221 = r1
r
,

−Γ112 = Γ121 = Γ211 = Γ222 = r2
r
,

all others Γijk being zero,

where ri =
∂r
∂xi , i = 1, 2. Let e0 = ∂0, e1 = 1

r
∂1 and e2 = 1

r
∂2, then {ei} is an

orthnormal frame field around p. Also, a simple calculation shows that

∇e0ej = ∇∂0

1

r
∂j =

1

r

∑

k

Γ0jk∂k for j = 1, 2

and hence we have

(14) B0ji = Γ0ji for i, j = 1, 2.

We put X = e0 and Y = e1 in (5) then we have

∂2h

∂t∂x1
(=: h10) + h2B021 = 0

and with (13) and (14) it becomes

(15) h10 = 0.

Similarly, putting X = e0 and Y = e2 in (5) we have

(16) h20 = 0.

Consequently, from (15) and (16), we get h̃(x1, x2) = A for some constant A
and (12) becomes

h(t, x1, x2) =
λ

2
t2 +At+ ĥ(x1, x2).

�

Theorem 3. If a product space M2 ×R admits a gradient Ricci soliton whose

potential function depends only on R, then M2 is of constant curvature.

Proof. We follow the same notation to that of Theorem 2. For a product
manifold M2 × R, we already found

(17) B001 = B002 = B110 = B120 = B210 = B220 = 0.

Suppose M2 × R admits a gradient Ricci soliton with a potential vector field
Dh = h0e0, that is, the gradient field of potential function h depends only on
R. We put X = Y = e1 in (5). Then we have

λ = h0B101 + µ

and with (17) it becomes
µ = λ.
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Since µ is a constant, M2 is locally isometric to S
2, H2 or R2. In this case,

the potential function h is of the form

h =
λ

2
t2 +At+B,

where A and B are constants. Such a gradient Ricci soliton is said to be rigid

([7]). �

Corollary 4. A complete and simply-connected semi-symmetric 3-manifold M
admitting a gradient Ricci soliton is isometric to S

3, H3, R3; S2×R or H2×R,

where the potential function depends only on the nullity distribution for the

latter two cases.
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[1] E. Cartan, Lecons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris,
1946.

[2] B. Chow and D. Knopf, The Ricci Flow: An introduction, Mathematical Surveys and
Monographs 110, American Mathematical Society, 2004.

[3] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17
(1982), no. 2, 255–306.

[4] , The Ricci flow on surfaces, Mathematics and general relativity (santa Cruz,
CA, 1986), 237–262, Contemp. Math. 71, American Math. Soc., 1988.

[5] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993),
no. 4, 301–307.

[6] G. Perelman, The entropy formula for the Ricci flow and its geometric applications,
http://arXiv.org/abs/math.DG/02111159.

[7] P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241

(2009), no. 2, 329–345.
[8] K. Sekigawa, On some 3-dimensional complete Riemannian manifolds satisfying
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