GRADIENT RICCI SOLITONS WITH SEMI-SYMMETRY

JONG TAEK CHO AND JIYEON PARK

ABSTRACT. We prove that a semi-symmetric 3-dimensional gradient Ricci soliton is locally isometric to a space form \mathbb{S}^3 , \mathbb{H}^3 , \mathbb{R}^3 (Gaussian soliton); or a product space $\mathbb{R} \times \mathbb{S}^2$, $\mathbb{R} \times \mathbb{H}^2$, where the potential function depends only on the nullity.

1. Introduction

A $Ricci \ soliton$ is a natural generalization of an Einstein metric and is defined on a Riemannian manifold (M,g) by

(1)
$$\frac{1}{2} \mathcal{L}_V g + \text{Ric} - \lambda g = 0,$$

where V is a vector field (the potential vector field), λ a constant on M. Compact Ricci solitons are the fixed points of the Ricci flow: $\frac{\partial}{\partial t}g = -2$ Ric projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise as blow-up limits for the Ricci flow on compact manifolds. The Ricci soliton is said to be shrinking, steady, and expanding according as $\lambda > 0$, $\lambda = 0$, and $\lambda < 0$, respectively. Hamilton [4] and Ivey [5] proved that a Ricci soliton on a compact manifold has constant curvature in dimension 2 and 3, respectively. If the vector field V = Dh, the gradient of a potential function h, then g is called a gradient Ricci soliton and equation (1) assumes the form

(2)
$$\operatorname{Hess} h + \operatorname{Ric} = \lambda g,$$

Trivial examples are given by Einstein metrics with Hess h = 0. Another interesting soliton occurs on Euclidean space \mathbb{R}^n (with a flat metric). Indeed, assuming $h = \frac{\lambda}{2}|x|^2$ on \mathbb{R}^n then we have Hess h = λg . Therefore it yields a gradient Ricci soliton, which is called a *Gaussian soliton*. Due to Perelman's result (Remark 3.2 in [6]), we find that the potential vector field in a compact Ricci soliton is written as the sum of a gradient and a Killing vector field. For details we refer to [3] or [2] about the Ricci flows and their solitons.

Received February 14, 2013.

 $^{2010\} Mathematics\ Subject\ Classification.\ 53C21,\ 53C25.$

Key words and phrases. semi-symmetric spaces, gradient Ricci solitons, Gaussian soliton.

Let R denote its Riemann curvature tensor on a Riemannian manifold (M,g). Cartan [1] investigated M satisfying the condition $R(X,Y) \cdot R = 0$ for all vector fields X,Y on M. Here the linear endomorphism R(X,Y) acts as a derivation on R. Such a Riemannian manifold is called a semi-symmetric space. In dimension three, Sekigawa [8] proved that a complete and irreducible semi-symmetric space is of constant curvature if it has a finite volume. Other than locally symmetric spaces, the fundamental examples of semi-symmetric spaces are real cones, Kählerian cones, and spaces foliated by Euclidean spaces of codimension 2. Their local and global structures are intensively investigated by Szabo [9], [10].

In the present paper, we prove that a semi-symmetric 3-manifold M admitting a gradient Ricci soliton is locally isometric to one of the following: \mathbb{S}^3 , \mathbb{H}^3 , \mathbb{R}^3 ; $\mathbb{S}^2 \times \mathbb{R}$, or $\mathbb{H}^2 \times \mathbb{R}$, where the potential function depends only on the nullity distribution for the latter two cases.

All manifolds in the present paper are assumed to be connected and smooth.

2. Ricci solitons with semi-symmetry

First, we remind a result due to Petersen and Wylie [7].

Proposition 1. If a gradient Ricci soliton is Einstein, then Hess h=0 or it is a Gaussian soliton.

Now, we prove:

Theorem 2. If a semi-symmetric 3-manifold M admits a gradient Ricci soliton, then M is locally isometric to \mathbb{S}^3 , \mathbb{H}^3 , \mathbb{R}^3 (Gaussian soliton) or a product space $M_1^2 \times \mathbb{R}$ almost everywhere.

Proof. Let (M, g) be a semi-symmetric 3-manifold. Then M satisfies

$$R(X,Y) = SX \wedge Y + X \wedge SY - (r/2)X \wedge Y,$$

where $(X \wedge Y)Z = g(Y,Z)X - g(X,Z)Y$, $\operatorname{Ric}(X,Y) = g(SX,Y)$ and r is the scalar curvature. Let (μ_1, μ_2, μ_3) be eigenvalues of the Ricci operator S at $p \in M$. Then the semi-symmetry condition $R(X,Y) \cdot R = 0$ is equivalent to

$$(\mu_i - \mu_j)(2(\mu_i + \mu_j) - R) = 0.$$

This implies only the three cases to be considered (at each point) (cf. [8]):

$$(\mu, \mu, \mu), (\mu, \mu, 0), (0, 0, 0).$$

If there is an open neighborhood U of p with (μ, μ, μ) , $\mu \neq 0$ (or (0,0,0), respectively), then we can see that M is Einstein. Then by Proposition 1 we see that M is a space of constant curvature $\frac{\mu}{2}$ or locally a Gaussian soliton. So, we now assume the case $(\mu, \mu, 0)$, $\mu \neq 0$ almost everywhere (in open and dense

subset in M). Then, there exists a local orthonormal frame field $\{e_0 = u, e_1, e_2\}$ around p and a differentiable function μ on M such that

$$\begin{cases} R(e_1, e_2) = \mu e_1 \wedge e_2 \\ \text{all others } R(e_i, e_j) \text{ being zero,} \end{cases}$$

where $e_1 \wedge e_2$ denotes $g(\cdot, e_2)e_1 - g(\cdot, e_1)e_2$. The tangent space T_pM at p is decomposed as follows:

$$T_pM = D_0(p) \oplus D_1(p)$$

where $D_1(p) = \operatorname{span}_{\mathbb{R}} \{e_1, e_2\}$ and $D_0(p) = \operatorname{span}_{\mathbb{R}} \{e_0\}$. We put

$$\nabla_{e_i} e_j = \sum_k B_{ijk} e_k \text{ for } i, j, k = 0, 1, 2,$$

where ∇ denotes the Levi-Civita connection. Then we easily see that $B_{ijk} = -B_{ikj}$. Moreover, we get

$$(\nabla_{e_0} R)(e_1, e_2) = \mu_0 \ e_1 \wedge e_2 + \mu(B_{010}e_0 \wedge e_2 + B_{020}e_1 \wedge e_0),$$

$$(\nabla_{e_1} R)(e_2, e_0) = \mu B_{101}e_1 \wedge e_2,$$

$$(\nabla_{e_2} R)(e_0, e_1) = \mu B_{202}e_1 \wedge e_2.$$

By the second Bianchi identity, we have

$$(\nabla_{e_0} R)(e_1, e_2) + (\nabla_{e_1} R)(e_2, e_0) + (\nabla_{e_2} R)(e_0, e_1)$$

= $(\mu_0 + \mu(B_{101} + B_{202}))e_1 \wedge e_2 + \mu(B_{010}e_0 \wedge e_2 + B_{020}e_1 \wedge e_0) = 0$

and it implies that

$$(3) B_{001} = B_{002} = 0$$

and

(4)
$$\mu_0 - \mu(B_{110} + B_{220}) = 0.$$

Thus, from (3) we see that each integral curve of $e_0 = u$ is a totally geodesic leaf. Such a manifold is called a foliated space of totally geodesic leaves and the class of such manifolds is denoted by FOL_1^3 .

For the class, we have the Ricci curvature:

$$\begin{cases} \operatorname{Ric}(e_1, e_1) = \operatorname{Ric}(e_2, e_2) = \mu, \\ \operatorname{Ric}(e_1, e_2) = \operatorname{Ric}(u, e_j) = 0. \end{cases}$$

Suppose that M admits a gradient Ricci soliton with a potential vector field $Dh = h_0e_0 + h_1e_1 + h_2e_2$, where $h_i = g(Dh, e_i)$, i = 0, 1, 2. Then from (2) we have

(5)
$$g(\nabla_X Dh, Y) + \text{Ric}(X, Y) - \lambda g(X, Y) = 0.$$

Now, let $\gamma(t)$ be an integral curve of u through p, i.e., $\gamma_p(t) = \exp_p tu$. From (5) we can derive

(6)
$$R(X,Y)Dh = (\nabla_Y S)X - (\nabla_X S)Y.$$

From $Se_0 = 0$, $Se_1 = \mu e_1$ and $Se_2 = \mu e_2$, we compute

$$(\nabla_{e_1} S)e_2 = (e_1 \mu)e_2 + \mu \nabla_{e_1} e_2 - S \nabla_{e_1} e_2$$

= $(e_1 \mu)e_2 + \mu B_{120}e_0$.

We put $X = e_0$ and $Y = e_1$ in (6). Then we have

$$(\mu B_{110} - \mu_0)e_1 + \mu B_{120}e_2 = 0$$

and it implies that

(7)
$$\mu B_{110} = \mu_0$$

and

(8)
$$\mu B_{120} = 0.$$

Similarly, putting $X = e_0$ and $Y = e_2$ in (6), we have

$$\mu B_{210}e_1 + (\mu B_{220} - \mu_0)e_2 = 0$$

and it implies that

(9)
$$\mu B_{220} = \mu_0$$

and

$$\mu B_{210} = 0.$$

Hence, from (4), (7) and (9) we have

$$\mu_0 = 0,$$

where $\mu_0 = \frac{\partial h}{\partial t}$. Since $\mu \neq 0$, from (7), (9) and (11) we have $B_{110} = B_{220} = 0$. From (8) and (10) we also find that $B_{120} = B_{210} = 0$. From those facts we see that each conullity distribution D_1 is integrable and forms a totally geodesic submanifold. After all, we conclude that M is a local product space of a 1-dimensional \mathbb{R} and a 2-dimensional manifold M_1^2 almost everywhere.

Moreover, we put $X = Y = e_0$ in (5). Then we have

$$\frac{\partial^2 h}{\partial t^2} (= h_{00}) = \lambda.$$

Hence, in this case, the potential function h is of the form

(12)
$$h(t, x^1, x^2) = \frac{\lambda}{2}t^2 + \tilde{h}(x^1, x^2)t + \hat{h}(x^1, x^2),$$

where functions \tilde{h} and \hat{h} depend on (x^1, x^2) . Here, we assume that (x^1, x^2) is an isothermal coordinate system on M_1^2 , i.e.,

$$(g_{ij}) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 \end{pmatrix},$$

where $\{\partial_i := \frac{\partial}{\partial x^i}\}$ is a coordinate basis and $r = r(x^1, x^2)$ is a positive smooth function on M^2 . We denote

$$\nabla_{\partial_i}\partial_j = \sum_k \Gamma_{ijk}\partial_k \text{ for } i,j,k = 0,1,2.$$

Then we can easily show that

(13)
$$\begin{cases} \Gamma_{111} = \Gamma_{122} = \Gamma_{212} = -\Gamma_{221} = \frac{r_1}{r}, \\ -\Gamma_{112} = \Gamma_{121} = \Gamma_{211} = \Gamma_{222} = \frac{r_2}{r}, \\ \text{all others } \Gamma_{ijk} \text{ being zero,} \end{cases}$$

where $r_i = \frac{\partial r}{\partial x^i}$, i = 1, 2. Let $e_0 = \partial_0$, $e_1 = \frac{1}{r}\partial_1$ and $e_2 = \frac{1}{r}\partial_2$, then $\{e_i\}$ is an orthnormal frame field around p. Also, a simple calculation shows that

$$\nabla_{e_0} e_j = \nabla_{\partial_0} \frac{1}{r} \partial_j = \frac{1}{r} \sum_k \Gamma_{0jk} \partial_k$$
 for $j = 1, 2$

and hence we have

(14)
$$B_{0ji} = \Gamma_{0ji}$$
 for $i, j = 1, 2$.

We put $X = e_0$ and $Y = e_1$ in (5) then we have

$$\frac{\partial^2 h}{\partial t \partial x^1} (=: h_{10}) + h_2 B_{021} = 0$$

and with (13) and (14) it becomes

$$(15) h_{10} = 0.$$

Similarly, putting $X = e_0$ and $Y = e_2$ in (5) we have

$$(16) h_{20} = 0.$$

Consequently, from (15) and (16), we get $\tilde{h}(x^1, x^2) = A$ for some constant A and (12) becomes

$$h(t, x^1, x^2) = \frac{\lambda}{2}t^2 + At + \hat{h}(x^1, x^2).$$

Theorem 3. If a product space $M^2 \times \mathbb{R}$ admits a gradient Ricci soliton whose potential function depends only on \mathbb{R} , then M^2 is of constant curvature.

Proof. We follow the same notation to that of Theorem 2. For a product manifold $M^2 \times \mathbb{R}$, we already found

(17)
$$B_{001} = B_{002} = B_{110} = B_{120} = B_{210} = B_{220} = 0.$$

Suppose $M^2 \times \mathbb{R}$ admits a gradient Ricci soliton with a potential vector field $Dh = h_0 e_0$, that is, the gradient field of potential function h depends only on \mathbb{R} . We put $X = Y = e_1$ in (5). Then we have

$$\lambda = h_0 B_{101} + \mu$$

and with (17) it becomes

$$\mu = \lambda$$
.

Since μ is a constant, M^2 is locally isometric to \mathbb{S}^2 , \mathbb{H}^2 or \mathbb{R}^2 . In this case, the potential function h is of the form

$$h = \frac{\lambda}{2}t^2 + At + B,$$

where A and B are constants. Such a gradient Ricci soliton is said to be rigid ([7]).

Corollary 4. A complete and simply-connected semi-symmetric 3-manifold M admitting a gradient Ricci soliton is isometric to \mathbb{S}^3 , \mathbb{H}^3 , \mathbb{R}^3 ; $\mathbb{S}^2 \times \mathbb{R}$ or $\mathbb{H}^2 \times \mathbb{R}$, where the potential function depends only on the nullity distribution for the latter two cases.

Acknowledgement. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2012R1A1B3003930).

References

- E. Cartan, Lecons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.
- [2] B. Chow and D. Knopf, The Ricci Flow: An introduction, Mathematical Surveys and Monographs 110, American Mathematical Society, 2004.
- [3] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255–306.
- [4] _____, The Ricci flow on surfaces, Mathematics and general relativity (santa Cruz, CA, 1986), 237–262, Contemp. Math. 71, American Math. Soc., 1988.
- [5] T. Ivey, Ricci solitons on compact three-manifolds, Differential Geom. Appl. 3 (1993), no. 4, 301–307.
- [6] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, http://arXiv.org/abs/math.DG/02111159.
- [7] P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), no. 2, 329–345.
- [8] K. Sekigawa, On some 3-dimensional complete Riemannian manifolds satisfying $R(X,Y) \cdot R = 0$, Tôhoku Math. J. **27** (1975), no. 4, 561–568.
- [9] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. I. The Local version, J. Diff. Geom. 17 (1982), no. 4, 531–582.
- [10] _____, Structure theorems on Riemannian spaces satisfying $R(X,Y) \cdot R = 0$. II, Global versions, Geom. Dedicata 19 (1985), no. 1, 65–108.

JONG TAEK CHO

DEPARTMENT OF MATHEMATICS

CHONNAM NATIONAL UNIVERSITY

Gwangju 500-757, Korea

E-mail address: jtcho@chonnam.ac.kr

JIYEON PARK
DEPARTMENT OF MATHEMATICS AND STATISTICS
GRADUATE SCHOOL
CHONNAM NATIONAL UNIVERSITY
GWANGJU 500-757, KOREA

 $E ext{-}mail\ address: jiyeon.park66@gmail.com}$