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THE NORMALIZED LAPLACIAN ESTRADA INDEX OF

GRAPHS†

MARDJAN HAKIMI-NEZHAAD, HONGBO HUA, ALI REZA ASHRAFI∗ AND
SHUHUA QIAN

Abstract. Suppose G is a simple graph. The ℓ−eigenvalues δ1, δ2, . . . , δn
of G are the eigenvalues of its normalized Laplacian ℓ. The normalized

Laplacian Estrada index of the graph G is defined as ℓEE = ℓEE(G) =
Σn

i=1e
δi . In this paper the basic properties of ℓEE are investigated. More-

over, some lower and upper bounds for the normalized Laplacian Estrada
index in terms of the number of vertices, edges and the Randic index are ob-

tained. In addition, some relations between ℓEE and graph energy Eℓ(G)
are presented.
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1. Introduction

Let G = (V,E) be a simple graph with n vertices and m edges. The eigen-
values of the adjacency matrix A(G) are called the eigenvalues of G and form
the spectrum of G. Suppose {λ1, λ2, . . . , λn} is the spectrum of G such that
λ1 ≤ λ2 ≤ · · · ≤ λn. If G has exactly s distinct eigenvalues δ1, . . . , δs and the
multiplicity of δi is ti, 1 ≤ i ≤ s, then we use the following compact form

Spec(G) =

(
δ1
t1

δ2
t2

· · · δs
ts

)
for the spectrum of G.

The Estrada index of the graph G is defined as EE = EE(G) = Σn
i=1e

λi .
This graph invariant was introduced by Ernesto Estrada, which has noteworthy
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chemical applications, see [12, 13, 14] for details. We encourage the interested
readers to consult [2, 11, 16] for the mathematical properties of Estrada index.

The Laplacian matrix of G is defined as L(G) = D(G) − A(G), where A(G)
and D(G) are the adjacency and diagonal matrices of G, respectively. If 0 =
µ1 ≤ µ2 ≤ · · · ≤ µn are the Laplacian eigenvalues of G, then the Laplacian
Estrada index, L−Estrada index for short, of G is defined as the sum of the
terms eµi , 1 ≤ i ≤ n. This quantity is denoted by LEE(G). There exists a vast
literature that studies the L−Estrada index of graphs. We refer the readers to
[15, 19, 24] for more information.

The normalized Laplacian matrix ℓ(G) = [ℓi,j ]n×n is defined as:

ℓi,j =


1 if i = j and deg(vi) ̸= 0

− 1√
deg(vi) deg(vj)

if i ̸= j and vi is adjacent to vj .

0 otherwise

The normalized Laplacian eigenvalues or ℓ−spectrum of G are denoted by
0 = δ1 ≤ δ2 ≤ · · · ≤ δn. The multiplicity of δ1 = 0 is equal to the number
of connected components of G. Define φ(G, δ) = det(δIn − ℓ(G)), where In is
the unit matrix of order n. This polynomial is called the normalized Laplacian
characteristic polynomial. The basic properties of the normalized Laplacian
eigenvalues can be found in [8, 9]. The normalized Laplacian eigenvalues of
an n−vertex connected graph G satisfying the following elementary conditions:
Σn

i=1δi = n and Σn
i=1δ

2
i = n+2R−1(G), where R−1(G) is Randic index of G, see

[6, 8, 9] for details.
We now define the normalized Laplacian Estrada index, simply called ℓ−Estrada

index, of G by the following equation:

ℓEE = ℓEE(G) =
n∑

i=1

eδi .

From the power-series expansion of ex, we have:

ℓEE =
∞∑
k=0

1

k!

n∑
i=1

δki ,

where we assumed that 00 = 1.
We now introduce some notation that will be used throughout this paper. The

complete graph on n vertices is denoted by Kn. The line graph l(G) of a graph
G is another graph l(G) that represents the adjacencies between edges of G. In
a graph theoretical language V (l(G)) = E(G) and two edges of G are adjacent
in l(G) if they have a common vertex. Suppose G denotes the complement of
G. For two graphs G and H, G ∪H is the disjoint union of G and H. The join
G+H is the graph obtained from G ∪H by connecting all vertices from V (G)
with all vertices from V (H). If G1, G2, . . . , Gk are graphs with mutually disjoint
vertex sets, then we denote G1 + G2 + · · · + Gk by Σk

j=1Gj . In the case that

G1 = G2 = . . . = Gk = G, we denote
∑k

j=1 Gj by G(k).
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The following results are crucial throughout this paper.

Lemma 1.1 (See [9] for details). Let G be a graph of order n ≥ 2 that contains
no isolated vertices. We have
i) If G is connected with m edges and diameter D, then δ2(G) ≥ 1

2mD > 0.
ii) δn(G) ≥ n

n−1 with equality if and only if G is the complete graph on n vertices.

Lemma 1.2 ([21] Theorems 2.2 and 2.3). Let G be a graph of order n with
no isolated vertices. Suppose G has minimum vertex degree equal to dmin and
maximum vertex degree equal to dmax. Then

n
2dmax

≤ R−1(G) ≤ n
2dmin

. Equality
occurs in both bounds if and only if G is a regular graph.

Lemma 1.3. Let G be an n−vertex graph. Then δ2 = · · · = δn if and only if
G ∼= Kn or G ∼= Kn.

Proof. We know that δ1 = 0. Suppose that δ2 = · · · = δn. If G is connected
on n ≥ 3 vertices, then by [7, Corollary 2.6.4] G has exactly two distinct
ℓ−eigenvalues if and only if G is the complete graph. If G is not connected,
then δ2 = 0 and if δi = 0 and δi+1 ̸= 0 then by [9, Lemma 1.7 (iv)], G has
exactly i connected components. So, all Laplacian eigenvalues are equal to zero,
which obviously implies that G ∼= Kn. �

2. Examples

In this section, the normalized Laplacian Estrada index of some well-known
graphs are computed.

Example 2.1. In this example the normalized Laplacian Estrada index of com-
plete and cocktail-party graphs are computed. We begin with the complete
graph. The normalized Laplacian spectrum of Kn and cocktail-party graph
CPn

2
are computed as follows:

ℓSpec(Kn) =

(
0
1

n
n−1

n− 1

)
and ℓSpec(CPn

2
) =

(
0
1

1
n
2

n
n−2
n
2 − 1

)
.

So, ℓEE(Kn) = 1 + (n− 1)e
n

n−1 and ℓEE(CPn
2
) = 1 + n

2 e+ (n2 − 1)e
n

n−2 .

Example 2.2. The normalized Laplacian spectrum of the cycle Cn consists of
1− cos 2πi

n , where 0 ≤ i ≤ n− 1. So,

ℓEE(Cn) =
n−1∑
i=0

e1−cos 2πi
n = ne

(
1

n

n−1∑
i=0

e−cos 2πi
n

)
≈ ne

2π

∫ 2π

0

e−cosxdx.

Suppose Z0 =

∫ 2π

0

e−cosxdx ≈ 7.954926524. Then ℓEE(Cn) ≈ ne
2πZ0.
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Example 2.3. The normalized Laplacian spectrum of n−vertex path Pn con-
sists of 1− cos πi

n−1 , where 0 ≤ i ≤ n− 1. Thus,

ℓEE(Pn) =
n−1∑
i=0

e1−cos πi
n−1

=
e

2
e
n−1∑
i=1

e1−cos πi
n−1 +

e

2

n−2∑
i=0

e1−cos πi
n−1 +

e

2
(e−1 + e)

=
1 + e2

2
+

(n− 1)e

2
(

1

n− 1

n−1∑
i=1

e− cos πi
n−1 +

1

n− 1

n−2∑
i=0

e− cos πi
n−1 )

≈
1 + e2

2
+

(n− 1)e

2
(
1

π

∫ π

0

e− cos xdx+
1

π

∫ π

0

e− cos xdx)

=
1 + e2

2
+

(n− 1)e

π
(

∫ π

0

e− cos xdx).

Therefore, ℓEE(Pn) ≈ 0.753004179 + 3.441523869n, for large n.
Consider the Petersen graph P on 10 vertices. Then the normalized Laplacian

spectrum of P is ℓSpec(P ) =

(
0
1

2
3
5

5
3
4

)
. Hence, ℓEE(P ) = 1+5e

2
3 +4e

5
3 .

Example 2.4. Take the star graph and add a new edge to each of its n vertices
to get a star-like graph T2t+1 with n = 2t+1 vertices. By [8], the ℓ−eigenvalues
of a star-like graph are as follows:

ℓSpec(T2t+1) =

(
0
1

1
1

1−
√
2
2

t− 1
1 +

√
2
2

t− 1

2
1

)
.
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�
�
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u

t

Figure 1. The Star-Like Graph T2t+1.

Therefore, ℓEE(G) = 1 + e+ e2 + e(n− 3) cosh 1√
2
.

Example 2.5. Suppose G is a m−petal graph on n = 2m+1 vertices, V (G) =
{v0, v1, . . . , v2m} and E(G) = {v0vi, v2i−1v2i}, for i > 1.
By [9], G has ℓ−eigenvalues 0, 1

2 with multiplicity m−1, and 3
2 with multiplicity

m+1. Hence, ℓEE(G) = 1+(m−1)e
1
2 +(m+1)e

3
2 . We now generalize this graph

as follows: Fix s,m ≥ 2 and letH = {u}+(sKm), see Figure 2 for an illustration.
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By [8], The ℓ−eigenvalues of H are 0, 1
m with multiplicity s− 1 and m+1

m with

multiplicity s(m− 1)+1. Then, ℓEE(H) = 1+(s− 1)e
1
m +(s(m− 1)+1)e

m+1
m .

u
��
��

��
��

Km

Km

Figure 2. The Generalized Petal Graph.

Example 2.6. Let G be the graph constructed as follows. Fix m ≥ 1. Take the
vertex set to be {u1, u2, u3} ∪ V1 ∪ V2 ∪ V3, where each Vi is a set of m vertices.
Then G has exactly 3(m+ 1) vertices. Define the edge set of G by

E(G) ={u1x : x ∈ V1 ∪ V2} ∪ {u2x : x ∈ V1 ∪ V3} ∪ {u3x : x ∈ V2 ∪ V3}

∪{u1u2, u2u3, u1u3} ∪
3∪

i=1

{xy : x, y ∈ vi, x ̸= y},

see Figure 3. By [7], the ℓ−eigenvalues of G are 0, 3
2(m+1) with multiplicity 2

and m+2
m+1 with multiplicity 3m. Hence, ℓEE(G) = 1 + 2e

3
2(m+1) + 3me

m+2
m+1 .
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Figure 3. The Generalized Triangle-Petal Graph.

Example 2.7. The hypercube graph Qn is a regular graph with 2n vertices,
which correspond to the subsets of an n−element set. Two vertices A and B
are joined by an edge if and only if A can be obtained from B by adding or
removing a single element. The ℓ−eigenvalues of the hypercube Qn are 2i

n with

multiplicity
(
n
i

)
, for 0 ≤ i ≤ n. So, ℓEE(Qn) =

n∑
i=0

(
n

i

)
e

2i
n = (e

2
n + 1)n.
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Example 2.8. The wheel graph on n+1 vertices is defined by Wn = Cn +K1.
Thus, the normalized Laplacian spectrum is

Spec(Wn) =

{
0,

4

3
, 1− 2

3
cos

2π

n
, 1− 2

3
cos

4π

n
, . . . , 1− 2

3
cos

2(n− 1)π

n

}
.

Thus,

ℓEE(Wn) = 1 + e
4
3 +

n−1∑
i=1

e1−
2
3 cos

2πi
n

= 1 + e
4
3 +

e

2
(

n∑
i=1

e−
2
3 cos

2πi
n +

n−1∑
i=0

e−
2
3 cos

2πi
n − 2e−

2
3 )

= 1 + e
4
3 − e

1
3 +

ne

2
(
1

n

n∑
i=1

e−
2
3 cos

2πi
n +

1

n

n−1∑
i=0

e−
2
3 cos

2πi
n )

≈ 1 + e
4
3 − e

1
3 +

ne

2
(
1

2π

∫ 2π

0

e−
2
3 cosxdx+

1

2π

∫ 2π

0

e−
2
3 cosxdx)

= 1 + e
4
3 − e

1
3 +

ne

2π
(

∫ 2π

0

e−
2
3 cosxdx).

Define N0 =

∫ 2π

0

e−
2
3 cosxdx ≈ 7.000950642. Since, e

4
3 ≈ 3.79367, e

1
3 ≈ 1.39561,

ℓEE(Wn) ≈ 3.398055468 + ne
2πN0 = 3.398055468 + 3.028807202n, for large n.

Example 2.9. A Möbius ladder Ln of order 2n is a graph obtained by intro-
ducing a twist in a 3−regular prism graph of order n that is isomorphic to the
circulant graph, see Figure 4.

u
u
u
u
u
u
u
u

Figure 4. The Möbuis Ladder Graph.

In this example the normalized Laplacian Estrada index of a Möbius graph
is computed. By [10], the normalized Laplacian eigenvalues of Ln are δi =

1− (−1)i

3 − 2
3cos

πi
n , where 0 ≤ i ≤ 2n− 1. So,

ℓEE(Ln) = e
2
3

2n−2∑
i=0

i even

e−
2
3 cos

πi
n + e

4
3

2n−1∑
i=0

i odd

e−
2
3 cos

πi
n
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= e
2
3

n−1∑
i=0

e−
2
3 cos

2πi
n + e

4
3

n−1∑
i=0

e−
2
3 cos

(2i+1)π
n

≈ ne
2
3

2π

∫ 2π

0

e−
2
3 cosxdx+

ne
4
3

2π

∫ 2π

0

e−
2
3 cosxdx

=
n

2π
(e

2
3 + e

4
3 )N0.

Note that,

n−1∑
i=0

e−
2
3 cos

(2i+1)π
n =

2n−1∑
i=0

e−
2
3 cos

πi
n −

n−1∑
i=0

e−
2
3 cos

2πi
n ≈ n

2π

∫ 2π

0

e−
2
3 cosxdx.

Since, e
4
3 ≈ 3.79367, e

2
3 ≈ 1.94773. Then ℓEE(Ln) ≈ 6.397276157n, for large n.

3. The ℓ−Estrada Index of Graphs

This section is concerned with the use of algebraic techniques in the study
of the normalized Estrada index of graphs. We begin with the following simple
theorem:

Theorem 3.1. Let G be a connected graph with n vertices. Then ℓEE(G) >
ne.

Proof. By Arithmetic-Geometric mean inequality [18], we have:

1

n
ℓEE(G) ≥ n

√∏
i

eδi =

n

√
e

∑
i

δi

= n
√
en = e,

with equality if and only if for all 1 ≤ i, j ≤ n, eδi = eδj if and only if δi =
δj . This implies that all δi

,s are zero. This contradicts the fact that G is
connected. �

Theorem 3.2. Let G be a graph with n vertices and c connected components.
Then, ℓEE(G) ≥ c+ (n− c)e

n
n−c . Equality holds if and only if G is a union of

copies of cKs, for some fixed integers s.

Proof. Using a similar method as in [3, Theorem 3], we obtain δ1 = · · · = δc = 0
and δc+1 + · · ·+ δn = n. Therefore,

ℓEE(G) = c+
n∑

i=c+1

eδi ≥ c+ (n− c)e
δc+1+···+δn

n−c ,

where the last inequality is obtained by applying the Arithmetic-Geometric mean
inequality. Suppose G = cKs, s ≥ 2. Then, n = cs, and the normalized
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Laplacian spectrum of G is as follows:

(
0
c

s
s−1

c(s− 1)

)
. Further,

ℓEE(G) = c+

n∑
i=c+1

e
s

s−1 = c+ (n− c)e
n

n−c .

This shows that the equality holds for G. Conversely, let equality hold for G.
Then all of non-zero normalized Laplacian eigenvalues of G must be mutually
equal. Then, the normalized Laplacian spectrum of the graph H is 0, δ with
multiplicity s − 1, where δ > 0 and s is a positive integer. Therefore, H = Ks,
and then G = cKs, as desired. �

Theorem 3.3. If G is a connected r−regular graph with n vertices, then ℓEE(G)

≥ 1 + (n− 1)e
n

n−1 , with equality if and only if G ∼= Kn.

Proof. The ℓ−spectrum of G is 0, 1 − λi

r , for 2 ≤ i ≤ n. Then ℓEE(G) =

1 + e
n∑

i=2

e
−λi
r . By arithmetic-geometric mean inequality, we get

(ℓEE(G)− 1)e−1 =
n∑

i=2

e
−λi
r ≥ (n− 1)(

n∏
i=2

e
−λi
r )

1
n−1

= (n− 1)e

−1
r(n−1)

n∑
i=2

λi

= (n− 1)e
1

n−1 ,

where the last equality follows from Σn
i=2λi = −r. Therefore, ℓEE(G) ≥ 1 +

(n − 1)e
n

n−1 with equality if and only if λ2 = · · · = λn. By assumption, this is
equivalent to G ∼= Kn. �

Theorem 3.4. If G is an r−regular bipartite graph, then ℓEE(G) < eEE(G)
1
r .

Proof. The ℓ−eigenvalues of G are 0, 1− λi

r for 2 ≤ i ≤ n. Thus,

ℓEE(G) =

n∑
i=1

(er−λi)
1
r = e

n∑
i=1

(e−λi)
1
r ≤ e(

n∑
i=1

e−λi)
1
r = eEE(G)

1
r

where the last equality follows from Σn
i=1e

λi = Σn
i=1e

−λi . Since G is bipartite,
the eigenvalues of G are symmetric around zero. The equality is attained if and
only if λ1 = · · · = λn and this is equivalent to G ∼= Kn, which is impossible. �

Theorem 3.5. Let G be a connected with n ≥ 2 vertices, m edges and diameter

D. Then ℓEE(G) ≥ 1 + e
1

2mD + e
2n

(n−1)
− 1

2mD + (n− 3)e
n

n−1 .

Proof. Since G is connected, δ1 = 0 and δ2, δn > 0. Then,

ℓEE(G) = eδ1 + eδ2 + · · ·+ eδn
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≥ 1 + eδ2 + eδn + (n− 3)(

n−1∏
i=3

eδi)
1

n−3

= 1 + eδ2 + eδn + (n− 3)e
n−δ2−δn

n−3 .

Define f(x, y) = 1 + ex + ey + (n− 3)e
n−x−y
n−3 , x, y > 0. Then we have:

fx = ex − e
n−x−y
n−3 ,

fy = ey − e
n−x−y
n−3 ,

fxx = ex +
1

n− 3
e

n−x−y
n−3 ,

fyy = ey +
1

n− 3
e

n−x−y
n−3 ,

fxy = fyx =
1

n− 3
e

n−x−y
n−3 .

Moreover, if fx = fy = 0 then (n − 2)x + y = n and so x + y = 2n
n−1 . If

x+ y = 2n
n−1 , then fxx > 0 and

fxxfyy − f2
xy = e

2n
n−1 +

1

n− 3
e

n
n−1 [ex + e

2n
n−1 ] > 0.

From the above, we conclude that f(x, y) has a minimum at x + y = 2n
n−1

and that the minimum value is 1 + ex + e
2n

n−1−x + (n − 3)e
n

n−1 . Hence f is an
increasing function for x > 0. By Lemma 1.1(i), δ2(G) ≥ 1

2mD > 0. Thus,

ℓEE(G) ≥ 1 + e
1

2mD + e
2n

(n−1)
− 1

2mD + (n− 3)e
n

n−1 ,

proving the result. �
Theorem 3.6. If G is an r−regular graph with n vertices, then

ℓEE(l(G)) ≤ LEE(G)
1

2(r−1) +
n(r − 2)

2
e

r
r−1 ,

with equality if and only if G ∼= Kn. In particular, for r−regular graphs,
ℓEE(l(G)) ≤

√
LEE(G) if and only if r = 2.

Proof. By [4, Theorem 3.8], the eigenvalues of l(G) are −2 with multiplicity
n(r−2)

2 , and λi(G) + r − 2 for 1 ≤ i ≤ n. Since the line graph of G is (2r −
2)−regular, and µi(l(G)) = 2r − 2 − λi(l(G)) for 1 ≤ i ≤ n, the normalized

Laplacian eigenvalues of l(G) are r
r−1with multiplicity n(r−2)

2 , and µi

2r−2 for 1 ≤
i ≤ n. Thus, we have:

ℓEE(l(G)) =
n∑

i=1

e
µi

2r−2 +
n(r − 2)

2
e

r
r−1

≤ (

n∑
i=1

eµi)
1

2r−2 +
n(r − 2)

2
e

r
r−1
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= LEE(G)
1

2r−2 +
n(r − 2)

2
e

r
r−1 .

From [24, Lemma 1.2] it follows that the above equality holds if and only if G
is an empty graph. �

Corollary 3.7. Let l(G) = l1(G) and lk+1(G) = l(lk(G)). If G is r−regular then

ℓEE(lk+1(G)) = ℓEE(lk(G))
1

2rk−2 + nk(rk−2)
2 e

rk
rk−1 , where lk(G) is rk−regular

with nk vertices, rk = (r − 2)2k + 2 and nk = n
2k

k−1∏
i=0

(2ir − 2i−1 + 2).

Corollary 3.8. If G is 2−regular and bipartite, then ℓEE(l(G)) ≤
√
EE(G).

A fullerene graph of order n is a cubic 3−connected planar graph with exactly
12 pentagonal faces and n

2 − 10 hexagonal faces.

Corollary 3.9. If Fn is an n−vertex fullerene graph, then

ℓEE(l(Fn)) ≤ LEE(Fn)
1
4 + 2.24n.

Consider G is r−regular graph with n−vertex and m-edges, and the eigen-
values of G are r = λ1(G), λ2(G), . . . , λn(G). A para-line graph of G, denoted
by C(G), is defined as a line graph of the subdivision graph S(G) (i.e., S(G)
is the graph obtained from G by inserting a vertex to every edge of G.) of
G. The para-line graph has also been called the clique-inserted graph. Note
that para-line graph is r−regular and the number of vertices of C(G) equals nr.

The eigenvalues of the para-line graph C(G) of G are
r+2±

√
r2+4(λi(G)+1)

2 for
1 ≤ i ≤ n, −2, with multiplicity m − n, and 0, with multiplicity m − n, see
[22, 23] for details.

Theorem 3.10. Let G be a r−regular graph with n vertices and m edges. Then

ℓEE(C(G)) > 1+
n(r − 2)e

2
+(

n(r − 2)

2
+1)e

r+2
r +2(n−1)e

r+2
2r +(n−1)(r2+6)−4r.

Proof. By above discussion, the normalized Laplacian eigenvalues of the para-
line graph C(G) of G are(

0
1

1
n(r−2)

2

r+2
r

n(r−2)
2 + 1

r+2−
√

r2+4(λi(G)+1)

2r
2 ≤ i ≤ n

r+2+
√

r2+4(λi(G)+1)

2r
2 ≤ i ≤ n

)
.

By definition,

ℓEE(C(G)) = 1 +
n(r − 2)e

2
+ (

n(r − 2)

2
+ 1)e

r+2
r +

n∑
i=2

e
r+2±

√
r2+4(λi(G)+1)

2r .

In the other hand,
n∑

i=2

e
r+2±

√
r2+4(λi(G)+1)

2r = 2(n− 1)e
r+2
2r +

n∑
i=2

e±
√

r2+4(λi(G)+1)
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= 2(n− 1)e
r+2
2r + 2

n∑
i=2

cosh(
√
r2 + 4(λi(G) + 1))

> 2(n− 1)e
r+2
2r +

n∑
i=2

(r2 + 4λi(G) + 6)

= 2(n− 1)e
r+2
2r + (n− 1)(r2 + 6) + 4

n∑
i=2

λi(G)

= 2(n− 1)e
r+2
2r + (n− 1)(r2 + 6)− 4r,

where the last equality follows from
n∑

i=2

λi(G) = −r. Therefore,

ℓEE(C(G)) > 1+
n(r − 2)e

2
+(

n(r − 2)

2
+1)e

r+2
r +2(n−1)e

r+2
2r +(n−1)(r2+6)−4r.

�

Corollary 3.11. Let C0(G) = G, Ck(G) = C(Ck−1(G)), k ≥ 1. Then

ℓEE(Ck(G)) > 1+
n′
k(r − 2)e

2
+(

n′
k(r − 2)

2
+1)e

r+2
r +2(n′

k−1)e
r+2
2r +(n′

k−1)(r2+6)−4r,

where Ck(G) is r−regular with n′
k = nrk, vertices for k ≥ 0.

Theorem 3.12. Let G be an r−regular graph. Then

ℓEE(G) ≤ 1 + e
n−r

n−r−1 n−r−1
√
EE(G)− 1.

Equality holds if and only if G is an empty graph.

Proof. By [10, Theorem 2.6], if the spectrum of G contains r = λ1, λ2, . . . , λn,
then the spectrum of G is n−r−1 and −1−λi, where 2 ≤ i ≤ n. Since µi = r−λi

and complement of G is (n−r−1)−regular, the normalized Laplacian eigenvalues
of G are 0 and n−µi

n−r−1 , where 2 ≤ i ≤ n. Thus,

ℓEE(G) = 1 +

n∑
i=2

(en−µi)
1

n−r−1

= 1 + e
n

n−r−1

n∑
i=2

(e−µi)
1

n−r−1

≤ 1 + e
n−r

n−r−1 (
n∑

i=2

eλi)
1

n−r−1

= 1 + e
n−r

n−r−1 n−r−1
√
EE(G)− 1.

Clearly, equality holds if and only if G is an empty graph. �
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Theorem 3.13. Let G1 and G2 be r− and s−regular graphs on n and m ver-
tices, respectively. Suppose 0 = δ1(G1) ≤ δ2(G1) ≤ · · · ≤ δn(G1) ≤ 2 are the
ℓ−eigenvalues of G1 and 0 = δ1(G2) ≤ δ2(G2) ≤ · · · ≤ δn(G2) ≤ 2 are the
ℓ−eigenvalues of G2. Then

ℓEE(G1 +G2) ≤1 + e
m

m+r (ℓEE(G1)− 1)
r

m+r

+ e
n

n+s (ℓEE(G2)− 1)
s

n+s + e
m

m+r+
s

n+s ,

with equality if and only if G1
∼= Kn and G2

∼= Km.

Proof. From [6, Theorem 12], the normalized Laplacian eigenvalues of G1 +G2

are as follows: (
0
1

m+rδi(G1)
m+r

2 ≤ i ≤ n

n+sδj(G2)
n+s

2 ≤ j ≤ m

m
m+r + n

n+s

1

)
.

Hence,

ℓEE(G1 +G2) = 1 + e
m

m+r

n∑
i=2

e
rδi(G1)
m+r + e

n
n+s

m∑
i=2

e
sδj(G2)

n+s + e
m

m+r
+ n

n+s

≤ 1 + e
m

m+r (
n∑

i=2

eδi(G1))
r

m+r + e
n

n+s (
m∑
i=2

eδj(G2))
s

n+s + e
m

m+r
+ n

n+s

= 1 + e
m

m+r (ℓEE(G1)− 1)
r

m+r + e
n

n+s (ℓEE(G2)− 1)
s

n+s + e
m

m+r
+ n

n+s ,

where the last equality follows from δ1(G1) = 0 and δ1(G2) = 0. The equality
is attained if and only if δi(G1) = 0, 2 ≤ i ≤ n, and δj(G2) = 0, 2 ≤ j ≤ m. So,

G1
∼= Kn and G2

∼= Km. This completes the proof. �

Apply Theorems 3.12 and 3.13 to evaluate the ℓ−Estrada indices of the com-
plete bipartite graphs, star graphs, CPn+2K1 and Kn−2+2K1. Start with the
complete bipartite graph Kn,m. We have:

ℓEE(Kn,m) = ℓEE(Kn +Km) = e2 + (n+m− 2)e+ 1,

ℓEE(Sn) = ℓEE(K1 +Kn−1) = e2 + (n− 2)e+ 1,

ℓEE(CPn + 2K1) = e
n+2
n + (n− 2)e

n+1
n + ne+ 1,

ℓEE(Kn−2 + 2K1) = e
n+1
n−1 + (n− 3)e

n
n−1 + ne+ 1.

Corollary 3.14. If Gj, 1 ≤ j ≤ k, is an r−regular n−vertex graph, then

ℓEE(
k∑

j=1

Gj) ≤ 1 + e
n(k−1)

n(k−1)+r (ℓEE(Gk)− 1)
r

n(k−1)+r

+ e
n

n(k−1)+r (ℓEE(

k−1∑
j=1

Gj)− 1)
n(k−2)+r
n(k−1)+r + e

nk
n(k−1)+r .
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Corollary 3.15. If G is an r−regular graph n−vertex graph, then

ℓEE(G(k)) ≤ 1 + e
n(k−1)

n(k−1)+r (ℓEE(G)− 1)
r

n(k−1)+r

+ e
n

n(k−1)+r (ℓEE((k − 1)G)− 1)
n(k−2)+r
n(k−1)+r + e

nk
n(k−1)+r .

Theorem 3.16. If G is connected graph with n vertices, then√
n(n− 1)e2 + 4R−1(G) + 5n < ℓEE(G) < en +R−1(G) +

n

2
(3− n)− 1.

Proof. Using a similar method as [15, Proposition 7], we have:

ℓEE(G) =
n∑

i=1

∞∑
k=0

(δi)
k

k!

≤ 5n

2
+R−1(G) +

∑
k≥3

1

k!
(

n∑
i=1

δi)
k

= en +R−1(G) +
n

2
(3− n)− 1,

resulting in the upper bound. If
n∑

i=1

δi
k = (

n∑
i=1

δi)
k, then δi = 0, where 2 ≤ i ≤ n.

Thus, G ∼= Kn. Obviously, the right equality is impossible. On the other

hand, ℓEE(G)2 =

n∑
i=1

e2δi +2
∑

1≤i<j≤n

eδieδj and so, by the arithmetic-geometric

inequality

2
∑

1≤i<j≤n

eδieδj ≥ n(n− 1)(
∏

1≤i<j≤n

eδieδj )
2

n(n−1)

= n(n− 1)[(

n∏
i=1

eδi)n−1]
2

n(n−1)

= n(n− 1)e2.

By means of a power-series expansion, we get
n∑

i=1

e2δi =
n∑

i=1

∑
k≥0

(2δi)
k

k!

= 3n+ 2(n+ 2R−1(G)) +
∑
k≥3

(2δi)
k

k!

≥ 4R−1(G) + 5n.

Therefore, ℓEE(G)2 = n(n−1)e2+4R−1(G)+5n. This implies the lower bound.

If
∑
k≥3

(2δi)
k

k!
= 0, then δi = 0 for 2 ≤ i ≤ n. Thus, G ∼= Kn. The left equality is

clearly impossible, proving the result. �
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Theorem 3.17. If G is a connected graph with n > 2 vertices, then

ℓEE(G) > 2 +
√
n(n− 1)e2 − 6n+ 4.

Proof. Using a similar method as in [19, Proposition 3.3], one can observe that

for k ≥ 2,
n∑

i=1

(2δi)
k ≥ 4

n∑
i=1

δki with equality for all k ≥ 2 if and only if δ1 =

· · · = δn = 0, i.e., G ∼= Kn. Then

n∑
i=1

e2δi ≥
n∑

i=1

∑
k≥0

(2δi)
k

k!
= 2n+

∑
k≥2

n∑
i=1

(2δi)
k

k!

≥ 2n+ 4
∑
k≥2

n∑
i=1

δki

k!

= 2n+ 4(ℓEE(G)− 2n).

In Theorem 3.16, it was shown that 2
∑

1≤i<j≤n

eδieδj ≥ n(n− 1)e2. Thus,

ℓEE(G)2 ≥ 4ℓEE(G) + n(n− 1)e2 − 6n.

Note that ex ≥ (1+x), so if n > 2 then n(n−1)e2−6n+4 ≥ 3n(n−1)−6n+4 ≥ 0.
Therefore,

ℓEE(G) ≥ 2 +
√
n(n− 1)e2 − 6n+ 4.

Since the graph is connected, the equality can not be attained. �

Theorem 3.18. If G is a connected graph with n vertices, then ℓEE(G) <

n− 1 + e
√

n
dmin .

Proof. By definition,

e−1ℓEE(G) =

n∑
i=1

eδi−1 ≤ n+

n∑
i=1

∑
k≥1

|δi − 1|k

k!

= n+
∑
k≥1

1

k!

n∑
i=1

(|δi − 1|2) k
2

≤ n+
∑
k≥1

1

k!
(

n∑
i=1

|δi − 1|2) k
2

= n+
∑
k≥1

1

k!
(2R−1(G))

k
2
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= n− 1 +
∑
k≥0

√
(2R−1(G))

k

k!

= n− 1 + e
√

2R−1(G),

and by Lemma 1.2, e−1ℓEE(G) ≤ n− 1 + e
√

n
dmin . Also, the equality occurs if

only if G ∼= Kn, which is impossible. �

Corollary 3.19. If G is an r−regular connected graph with n vertices, then

ℓEE(G) < n− 1 + e
√

n
r .

Theorem 3.20. If G is connected graph with n vertices, then

ℓEE(G) > n− 1 + e
√

n+2R−1(G) −
√
n+ 2R−1(G).

Proof. Recall that

n∑
i=1

δ2i = n+2R−1(G). Using a similar method as [24, Propo-

sition 3.1], for an integer k ≥ 3, (

n∑
i=1

δ2i )
k ≥ (

n∑
i=1

δki )
2, and then

n∑
i=1

δki ≤

(

n∑
i=1

δ2i )
k
2 = (n+ 2R−1(G))

k
2 . It is easily seen that

ℓEE(G) = 2n+
∑
k≥2

1

k!

n∑
i=1

δi
k

≥ 2n+ (n− 1)
∑
k≥2

1

k!
(
√
n+ 2R−1(G))k

= n− 1−
√
n+ 2R−1(G) + e

√
n+2R−1(G),

with equality if and only if at most one of δ1, δ2, . . . , δn is non-zero, or equiva-
lently G ∼= K2 ∪Kn−2 or G ∼= Kn, which is impossible. �

Theorem 3.21. If G is connected graph with n vertices, then

ℓEE(G) ≥ n+ 1 + (n− 1)e

√
n+2R−1(G)

n−1 −
√
(n− 1)(n+ 2R−1(G)),

with equality if and only if G ∼= Kn.

Proof. Using a similar method as given in [19, Proposition 3.4] and by an in-
equality from [16, p. 26], where a1, a2, . . . , ap are non-negative numbers and
m ≤ k with m, k ̸= 0, we have:(

1

p

p∑
i=1

ami

) 1
m

≤

(
1

p

p∑
i=1

aki

) 1
k

.
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Equality is attained if and only if a1 = a2 = · · · = ap. In above inequality, we
substitute m = 2, p = n− 1, ai = δi, 2 ≤ i ≤ n and k ≥ 2. Then we have:

n∑
i=2

δki ≥ (n− 1)

(
1

n− 1

n∑
i=2

δ2i

) k
2

= (n− 1)

(√
n+ 2R−1(G)

n− 1

)k

,

which is an equality for k = 2 whereas equality holds for k ≥ 3 if and only if
δ2 = · · · = δn. By Lemma 1.3, this is equivalent to G ∼= Kn or G ∼= Kn. Since
G is a connected graph, G ∼= Kn. Clearly,

ℓEE(G) = 2n+
∑
k≥2

1

k!

n∑
i=1

δi
k

≥ 2n+ (n− 1)
∑
k≥2

1

k!
(

√
n+ 2R−1(G)

n− 1
)k

= 2n+ (n− 1)(e

√
n+2R−1(G)

n−1 −
√

n+ 2R−1(G)

n− 1
− 1)

= n+ 1 + (n− 1)e

√
n+2R−1(G)

n−1 −
√
(n− 1)(n+ 2R−1(G)),

with equality if and only if the lower bound for
n∑

i=2

δki above is attained for k ≥ 3,

if and only if G ∼= Kn. �

4. Bounds for the ℓ−Estrada Index

We recall that the normalized Laplacian energy of the graph G is defined as

Eℓ(G) =
n∑

i=1

|δi − 1| [8]. In this section, the relationship between the ℓ−Estrada

index and the normalized Laplacian energy of graphs are investigated.

Theorem 4.1. If G is connected, then ℓEE(G) < e(n− 1 + eEℓ(G)).

Proof. By definition, we have

e−1ℓEE(G) =
n∑

i=1

eδi−1

=
n∑

i=1

∞∑
k=0

1

k!
(δi − 1)k

= n+

n∑
i=1

∑
k≥2

1

k!
(δi − 1)k

≤ n+
∑
k≥2

1

k!
(

n∑
i=1

|δi − 1|)k
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= n− 1 + eEℓ(G),

with equality if and only if

n∑
i=1

(δi−1)k = (

n∑
i=1

|δi−1|)k if and only if δi = 0, 1 ≤

i ≤ n, if and only if G is an empty graph with n vertices, which is impossible. �

In [5], the authors introduced the notion of the Randić matrix of a graph G
as R(G) = [Ri,j ]n×n, where

Ri,j =

{
1√

deg(vi) deg(vj)
if vi is and adjacent to vj

0 otherwise
.

The Randić energy of G is defined by ER(G) =
∑n

i=1 |τi|, where τi’s are the
eigenvalues of Randić matrix R(G).

Corollary 4.2. If G is connected then ℓEE(G) < e(n− 1 + eER(G)).

Proof. The proof is follows from [5, Theorem 2] and Theorem 4.1. �

Theorem 4.3. If G is a connected graph with n vertices, then

e−1ℓEE(G)− Eℓ(G) < n− 1−
√

n

dmin
+ e

√
n

dmin .

Proof. In the proof of Theorem 3.18, the following inequality is proved:

e−1ℓEE(G) ≤ n+

n∑
i=1

∑
k≥1

|δi − 1|k

k!
.

On the other hand, by definition of the normalized Laplacian energy,

e−1ℓEE(G) ≤ n+ Eℓ(G) +
n∑

i=1

∑
k≥2

|δi − 1|k

k!
.

Thus,

e−1ℓEE(G)− Eℓ(G) ≤ n+
n∑

i=1

∑
k≥2

|δi − 1|k

k!

≤ n− 1−
√
2R−1(G) + e

√
2R−1(G).

We now apply Lemma 1.2, to get e−1ℓEE(G)−Eℓ(G) ≤ n−1−
√

n
dmin

+e
√

n
dmin .

The equality is attained if and only if G ∼= Kn, which is impossible. �

Corollary 4.4. If G is an r−regular n−vertex graph, then

e−1ℓEE(G)− Eℓ(G) < n− 1−
√

n

r
+ e

√
n
r ,

e−1ℓEE(G)− ER(G) < n− 1−
√

n

r
+ e

√
n
r .
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Theorem 4.5. Let p, q and s be, respectively, the numbers of normalized Lapla-
cian eigenvalues which are greater than, equal to, and less than 1. Then

ℓEE(G) ≥ e(q + pe
Eℓ(G)

2p + se−
Eℓ(G)

2s ).

Proof. Let δ1, . . . , δp be the normalized Laplacian eigenvalues of G greater than
1, and δn−s+1, . . . , δn be the normalized Laplacian eigenvalues less than 1. Since
the sum of normalized Laplacian eigenvalues of a connected graph G is n and

Eℓ(G) = 2

p∑
i=1

(δi − 1) = −2
n∑

i=n−s+1

(δi − 1),

by the arithmetic-geometric mean inequality, we have:
p∑

i=1

eδi ≥ pe
δ1+···+δp

p = pe
Eℓ(G)

2p +1 ;

n∑
i=n−s+1

eδi ≥ pe
δn−s+1+···+δn

s = se−
Eℓ(G)

2s +1

and for eigenvalues equal to 1,
∑n−s

i=p+1 e
δi = qe. Now, the result is obtained by

combining these inequalities. �
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