J. Appl. Math. & Informatics Vol. **32**(2014), No. 1 - 2, pp. 203 - 209 http://dx.doi.org/10.14317/jami.2014.203

SOMEWHAT FUZZY γ -IRRESOLUTE CONTINUOUS MAPPINGS

YOUNG BIN IM, JOO SUNG LEE* AND YUNG DUK CHO

ABSTRACT. We define and characterize a somewhat fuzzy γ -irresolute continuous mapping and a somewhat fuzzy irresolute γ -open mapping on a fuzzy topological space.

AMS Mathematics Subject Classification : 54A40. Key words and phrases : somewhat fuzzy γ -irresolute continuous mapping, somewhat fuzzy irresolute γ -open mapping.

1. Introduction

The concept of fuzzy γ -continuous mappings on a fuzzy topological space was introduced and studied by I. M. Hanafy in [2]. Also, the concept of fuzzy γ -irresolute continuous mappings on a fuzzy topological space were introduced and studied by Y. B. Im et al. in [8] and fuzzy irresolute γ -open mappings on a fuzzy topological space was introduced and studied by Y. B. Im in [3].

Recently, somewhat fuzzy γ -continuous mappings on a fuzzy topological space were introduced and studied by G. Thangaraj and V. Seenivasan in [9].

In this paper, we define and characterize a somewhat fuzzy γ -irresolute continuous mapping and a somewhat fuzzy irresolute γ -open mapping which are stronger than a somewhat fuzzy γ -continuous mapping and a somewhat fuzzy γ -open mapping respectively. Besides, some interesting properties of those mappings are also given.

2. Preliminaries

A fuzzy set μ on a fuzzy topological space X is called fuzzy γ -open if $\mu \leq \text{ClInt}\mu \vee \text{IntCl}\mu$ and μ is called fuzzy γ -closed if μ^c is a fuzzy γ -open set on X. A mapping $f: X \to Y$ is called fuzzy γ -continuous if $f^{-1}(\nu)$ is a fuzzy γ -

open set on X for any fuzzy open set ν on Y and a mapping $f: X \to Y$ is

Received March 20, 2013. Revised July 30, 2013. Accepted August 4, 2013. $\ ^* {\rm Corresponding}$ author.

 $[\]bigodot$ 2014 Korean SIGCAM and KSCAM.

called fuzzy γ -open if $f(\mu)$ is a fuzzy γ -open set on Y for any fuzzy open set μ on X. It is clear that every fuzzy continuous mapping is a fuzzy γ -continuous mapping. And every fuzzy open mapping is a fuzzy γ -open mapping from the above definitions. But the converses are not true in general [2].

A mapping $f: X \to Y$ is called fuzzy γ -irresolute continuous if $f^{-1}(\nu)$ is a fuzzy γ -open set on X for any fuzzy γ -open set ν on Y and a mapping $f: X \to Y$ is called fuzzy irresolute γ -open if $f(\mu)$ is a fuzzy γ -open set on Y for any fuzzy γ -open set μ on X. It is clear that every fuzzy γ -irresolute continuous mapping is a fuzzy γ -continuous mapping. And every fuzzy irresolute γ -open mapping is a fuzzy open mapping from the above definitions. But the converses are not true in general [8] and [3].

A mapping $f: X \to Y$ is called *somewhat fuzzy* γ -continuous if there exists a fuzzy γ -open set $\mu \neq 0_X$ on X such that $\mu \leq f^{-1}(\nu) \neq 0_X$ for any fuzzy open set ν on Y. It is clear that every fuzzy γ -continuous mapping is a somewhat fuzzy γ -continuous mapping. But the converse is not true in general.

A mapping $f: X \to Y$ is called *somewhat fuzzy* γ -open if there exists a fuzzy γ -open set $\nu \neq 0_Y$ on Y such that $\nu \leq f(\mu) \neq 0_Y$ for any fuzzy open set μ on X. Every fuzzy open mapping is a somewhat fuzzy γ -open mapping but the converse is not true in general [9].

3. Somewhat fuzzy γ -irresolute continuous mappings

In this section, we introduce a somewhat fuzzy γ -irresolute continuous mapping and a somewhat fuzzy irresolute γ -open mapping which are stronger than a somewhat fuzzy γ -continuous mapping and a somewhat fuzzy γ -open mapping respectively. And we characterize a somewhat fuzzy γ -irresolute continuous mapping and a somewhat fuzzy irresolute γ -open mapping.

Definition 3.1. A mapping $f : X \to Y$ is called somewhat fuzzy γ -irresolute continuous if there exists a fuzzy γ -open set $\mu \neq 0_X$ on X such that $\mu \leq f^{-1}(\nu)$ for any fuzzy γ -open set $\nu \neq 0_Y$ on Y.

It is clear that every fuzzy γ -irresolute continuous mapping is a somewhat fuzzy γ -irresolute continuous mapping. And every somewhat fuzzy γ -irresolute continuous mapping is a fuzzy γ -continuous mapping from the above definitions. But the converses are not true in general as the following examples show.

Example 3.2. Let μ_1 , μ_2 and μ_3 be fuzzy sets on $X = \{a, b, c\}$ and let ν_1 , ν_2 and ν_3 be fuzzy sets on $Y = \{x, y, z\}$ with

$$\begin{aligned} \mu_1(a) &= 0.1, \mu_1(b) = 0.1, \mu_1(c) = 0.1, \\ \mu_2(a) &= 0.2, \mu_2(b) = 0.2, \mu_2(c) = 0.2, \\ \mu_3(a) &= 0.5, \mu_3(b) = 0.5, \mu_3(c) = 0.5 \text{ and} \\ \nu_1(x) &= 0.3, \nu_1(y) = 0.2, \nu_1(z) = 0.3, \\ \nu_2(x) &= 0.5, \nu_2(y) = 0.5, \nu_2(z) = 0.5, \\ \nu_3(x) &= 0.5, \nu_3(y) = 0.2, \nu_3(z) = 0.5. \end{aligned}$$

Let $\tau = \{0_X, \mu_1, \mu_1^c, \mu_2^c, 1_X\}$ be fuzzy topologies on X and let $\tau^* = \{0_Y, \nu_1, \nu_2, 1_Y\}$ be fuzzy topologies on Y. Consider the mapping $f : (X, \tau) \to (Y, \tau^*)$ defined by f(a) = y, f(b) = y and f(c) = y. Then we have $\mu_1 \leq f^{-1}(\nu_1) = \mu_2$, $f^{-1}(\nu_2) = \mu_3$ and $\mu_1 \leq f^{-1}(\nu_3) = \mu_2$. Since μ_1 is a fuzzy γ -open set on (X, τ) , f is somewhat fuzzy γ -irresolute continuous. But $f^{-1}(\nu_1) = \mu_2$ and $f^{-1}(\nu_3) = \mu_2$ are not fuzzy γ -open sets on (X, τ) . Hence f is not a fuzzy γ -irresolute continuous mapping.

Example 3.3. Let μ_1 , μ_2 and μ_3 be fuzzy sets on $X = \{a, b, c\}$ and let ν_1 , ν_2 and ν_3 be fuzzy sets on $Y = \{x, y, z\}$ with

$$\mu_1(a) = 0.2, \mu_1(b) = 0.2, \mu_1(c) = 0.2,$$

$$\mu_2(a) = 0.5, \mu_2(b) = 0.5, \mu_2(c) = 0.5, \text{ and}$$

$$\nu_1(x) = 0.3, \nu_1(y) = 0.2, \nu_1(z) = 0.3,$$

$$\nu_2(x) = 0.5, \nu_2(y) = 0.5, \nu_2(z) = 0.5.$$

Let $\tau = \{0_X, \mu_1^c, 1_X\}$ be fuzzy topologies on X and let $\tau^* = \{0_Y, \nu_2, 1_Y\}$ be fuzzy topologies on Y. Consider the mapping $f : (X, \tau) \to (Y, \tau^*)$ defined by f(a) = y, f(b) = y and f(c) = y. Since $f^{-1}(\nu_2) = \mu_2$ is fuzzy γ -open sets on $(X, \tau), f$ is fuzzy γ -continuous. But the inverse images $0_X \leq f^{-1}(\nu_1) = \mu_1$ of a fuzzy γ -open set ν_1 on (Y, τ^*) is not fuzzy γ -open on (X, τ) . Hence f is not a fuzzy somewhat γ -irresolute continuous mapping. \Box

Definition 3.4 ([9]). A fuzzy set μ on a fuzzy topological space X is called fuzzy γ -dense if there exists no fuzzy γ -closed set ν such that $\mu < \nu < 1$.

Theorem 3.5. Let $f : X \to Y$ be a mapping. Then the following are equivalent: (1) f is somewhat fuzzy γ -irresolute continuous.

(2) If ν is a fuzzy γ -closed set of Y such that $f^{-1}(\nu) \neq 1_X$, then there exists a fuzzy γ -closed set $\mu \neq 1_X$ of X such that $f^{-1}(\nu) \leq \mu$.

(3) If μ is a fuzzy γ -dense set on X, then $f(\mu)$ is a fuzzy γ -dense set on Y.

Proof. (1) implies (2): Let ν be a fuzzy γ -closed set on Y such that $f^{-1}(\nu) \neq 1_X$. Then ν^c is a fuzzy γ -open set on Y and $f^{-1}(\nu^c) = (f^{-1}(\nu))^c \neq 0_X$. Since f is somewhat fuzzy γ -irresolute continuous, there exists a fuzzy γ -open set $\lambda \neq 0_X$ on X such that $\lambda \leq f^{-1}(\nu^c)$. Let $\mu = \lambda^c$. Then $\mu \neq 1_X$ is fuzzy γ -closed such that $f^{-1}(\nu) = 1 - f^{-1}(\nu^c) \leq 1 - \lambda = \lambda^c = \mu$.

(2) implies (3): Let μ be a fuzzy γ -dense set on X and suppose $f(\mu)$ is not fuzzy γ -dense on Y. Then there exists a fuzzy γ -closed set ν on Y such that $f(\mu) < \nu < 1$. Since $\nu < 1$ and $f^{-1}(\nu) \neq 1_X$, there exists a fuzzy γ -closed set $\delta \neq 1_X$ such that $\mu \leq f^{-1}(f(\mu)) < f^{-1}(\nu) \leq \delta$. This contradicts to the assumption that μ is a fuzzy γ -dense set on X. Hence $f(\mu)$ is a fuzzy γ -dense set on Y.

(3) implies (1): Let $\nu \neq 0_Y$ be a fuzzy γ -open set on Y and $f^{-1}(\nu) \neq 0_X$. Suppose there exists no fuzzy γ -open $\mu \neq 0_X$ on X such that $\mu \leq f^{-1}(\nu)$. Then $(f^{-1}(\nu))^c$ is a fuzzy set on X such that there is no fuzzy γ -closed set δ on X with $(f^{-1}(\nu))^c < \delta < 1$. In fact, if there exists a fuzzy γ -open set δ^c such that $\delta^c \leq f^{-1}(\nu)$, then it is a contradiction. So $(f^{-1}(\nu))^c$ is a fuzzy γ -dense set on X. Then $f((f^{-1}(\nu))^c)$ is a fuzzy γ -dense set on Y. But $f((f^{-1}(\nu))^c) = f(f^{-1}(\nu^c)) \neq \nu^c < 1$. This is a contradiction to the fact that $f((f^{-1}(\nu))^c)$ is fuzzy γ -dense on Y. Hence there exists a γ -open set $\mu \neq 0_X$ on X such that $\mu \leq f^{-1}(\nu)$. Consequently, f is somewhat fuzzy γ -irresolute continuous.

A fuzzy topological space X is product related to a fuzzy topological space Y if for fuzzy sets μ on X and ν on Y whenever $\gamma^c \not\geq \mu$ and $\delta^c \not\geq \nu$ (in which case $(\gamma^c \times 1) \lor (1 \times \delta^c) \geq (\mu \times \nu)$) where γ is a fuzzy open set on X and δ is a fuzzy open set on Y, there exists a fuzzy open set γ_1 on X and a fuzzy open set δ_1 on Y such that $\gamma_1^c \geq \mu$ or $\delta_1^c \geq \nu$ and $(\gamma_1^c \times 1) \lor (1 \times \delta_1^c) = (\gamma^c \times 1) \lor (1 \times \delta^c)$ [1].

Theorem 3.6. Let X_1 be product related to X_2 and Y_1 be product related to Y_2 . Then the product $f_1 \times f_2 : X_1 \times X_2 \to Y_1 \times Y_2$ of somewhat fuzzy γ -irresolute continuous mappings $f_1 : X_1 \to Y_1$ and $f_2 : X_2 \to Y_2$ is also somewhat fuzzy γ -irresolute continuous.

Proof. Let $\lambda = \bigvee_{i,j}(\mu_i \times \nu_j)$ be a fuzzy γ -open set on $Y_1 \times Y_2$ where $\mu_i \neq 0_{Y_1}$ and $\nu_j \neq 0_{Y_2}$ are fuzzy γ -open sets on Y_1 and Y_2 respectively. Then $(f_1 \times f_2)^{-1}(\lambda) = \bigvee_{i,j}(f_1^{-1}(\mu_i) \times f_2^{-1}(\nu_j))$. Since f_1 is somewhat fuzzy γ -irresolute continuous, there exists a fuzzy γ -open set $\delta_i \neq 0_{X_1}$ such that $\delta_i \leq f_1^{-1}(\mu_i) \neq 0_{X_1}$. And, since f_2 is somewhat fuzzy γ -irresolute continuous, there exists a fuzzy γ -open set $\eta_j \neq 0_{X_2}$ such that $\eta_j \leq f_2^{-1}(\nu_j) \neq 0_{X_2}$. Now $\delta_i \times \eta_j \leq f_1^{-1}(\mu_i) \times f_2^{-1}(\nu_j) = (f_1 \times f_2)^{-1}(\mu_i \times \nu_j)$ and $\delta_i \times \eta_j \neq 0_{X_1 \times X_2}$ is a fuzzy γ -open set on $X_1 \times X_2$. Hence $\bigvee_{i,j}(\delta_i \times \eta_j) \neq 0_{X_1 \times X_2}$ is a fuzzy γ -open set on $X_1 \times X_2$ such that $\bigvee_{i,j}(\delta_i \times \eta_j) \leq \bigvee_{i,j}(f_1^{-1}(\mu_i) \times f_2^{-1}(\nu_j)) = (f_1 \times f_2)^{-1}(\bigvee_{i,j}(\mu_i \times \nu_j)) = (f_1 \times f_2)^{-1}(\lambda) \neq 0_{X_1 \times X_2}$. Therefore, $f_1 \times f_2$ is somewhat fuzzy γ -irresolute continuous.

Theorem 3.7. Let $f: X \to Y$ be a mapping. If the graph $g: X \to X \times Y$ of f is a somewhat fuzzy γ -irresolute continuous mapping, then f is also somewhat fuzzy γ -irresolute continuous.

Proof. Let ν be a fuzzy γ -open set on Y. Then $f^{-1}(\nu) = 1 \wedge f^{-1}(\nu) = g^{-1}(1 \times \nu)$. Since g is somewhat fuzzy γ -irresolute continuous and $1 \times \nu$ is a fuzzy γ -open set on $X \times Y$, there exists a fuzzy γ -open set $\mu \neq 0_X$ on X such that $\mu \leq g^{-1}(1 \times \nu) = f^{-1}(\nu) \neq 0_X$. Therefore, f is somewhat fuzzy γ -irresolute continuous. \Box

Definition 3.8. A mapping $f : X \to Y$ is called somewhat fuzzy irresolute γ -open if there exists a fuzzy γ -open set $\nu \neq 0_Y$ on Y such that $\nu \leq f(\mu)$ for any fuzzy γ -open set $\mu \neq 0_X$ on X.

It is clear that every fuzzy irresolute γ -open mapping is a somewhat fuzzy irresolute γ -open mapping. And every somewhat fuzzy irresolute γ -open mapping is a fuzzy γ -open mapping. Also, every fuzzy γ -open mapping is a somewhat fuzzy γ -open mapping from the above definitions. But the converses are not true in general as the following examples show.

Example 3.9. Let μ_1 and μ_2 be fuzzy sets on $X = \{a, b, c\}$ and let ν_1 and ν_2 be fuzzy sets on $Y = \{x, y, z\}$ with

$$\mu_1(a) = 0.1, \mu_1(b) = 0.1, \mu_1(c) = 0.1,$$

$$\mu_2(a) = 0.2, \mu_2(b) = 0.2, \mu_2(c) = 0.2 \text{ and}$$

$$\nu_1(x) = 0.0, \nu_1(y) = 0.1, \nu_1(z) = 0.0,$$

$$\nu_2(x) = 0.0, \nu_2(y) = 0.2, \nu_2(z) = 0.0,$$

$$\nu_3(x) = 0.0, \nu_3(y) = 0.8, \nu_3(z) = 0.0,$$

$$\nu_4(x) = 0.0, \nu_4(y) = 0.9, \nu_4(z) = 0.0.$$

Let $\tau = \{0_X, \mu_2, 1_X\}$ be fuzzy topologies on X and let $\tau^* = \{0_Y, \nu_1, \nu_1^c, \nu_2^c, 1_Y\}$ be fuzzy topologies on Y. Consider the mapping $f : (X, \tau) \to (Y, \tau^*)$ defined by f(a) = y, f(b) = y and f(c) = y. Since $f(\mu_1) = \nu_1, \nu_1 \leq f(\mu_2) = \nu_2, f(\mu_1^c) = \nu_3$ and $f(\mu_2^c) = \nu_4, f$ is somewhat fuzzy irresolute γ -open. But $f(\mu_2) = \nu_2$ is not a fuzzy γ -open set on (Y, τ^*) . Hence f is not a fuzzy irresolute γ -open mapping. \Box

Example 3.10. Let μ_1 , μ_2 and μ_3 be fuzzy sets on $X = \{a, b, c\}$ and let ν_1 and ν_2 be fuzzy sets on $Y = \{x, y, z\}$ with

$$\begin{aligned} \mu_1(a) &= 0.4, \mu_1(b) = 0.1, \mu_1(c) = 0.4, \\ \mu_2(a) &= 0.5, \mu_2(b) = 0.5, \mu_2(c) = 0.5, \\ \mu_3(a) &= 0.1, \mu_3(b) = 0.0, \mu_3(c) = 0.1 \text{ and} \\ \nu_1(x) &= 0.0, \nu_1(y) = 0.1, \nu_1(z) = 0.0, \\ \nu_2(x) &= 0.0, \nu_2(y) = 0.5, \nu_2(z) = 0.0. \end{aligned}$$

Let $\tau = \{0_X, \mu_1, \mu_2, 1_X\}$ be fuzzy topologies on X and let $\tau^* = \{0_Y, \nu_2, 1_Y\}$ be fuzzy topologies on Y. Consider the mapping $f : (X, \tau) \to (Y, \tau^*)$ defined by f(a) = y, f(b) = y and f(c) = y. Since $f(\mu_1) = \nu_1$ and $f(\mu_2) = \nu_2$ are fuzzy γ -open sets on $(Y, \tau^*), f$ is fuzzy γ -open. But $\mu_3 \neq 0_X$ is a fuzzy γ -open set on (X, τ) and $f(\mu_3) = 0_Y$. Hence f is not a fuzzy somewhat irresolute γ -open mapping. \Box

Example 3.11. Let μ_1 , μ_2 and μ_3 be fuzzy sets on $X = \{a, b, c\}$ with

$$\mu_1(a) = 0.1, \mu_1(b) = 0.1, \mu_1(c) = 0.1,$$

$$\mu_2(a) = 0.2, \mu_2(b) = 0.2, \mu_2(c) = 0.2 \text{ and}$$

$$\mu_3(a) = 0.3, \mu_3(b) = 0.3, \mu_3(c) = 0.3.$$

Let $\tau = \{0_X, \mu_2^c, 1_X\}$ and $\tau^* = \{0_X, \mu_1, \mu_3, 1_X\}$ be fuzzy topologies on X. Consider the identity mapping $i_X : (X, \tau) \to (X, \tau^*)$. We have $\mu_3 \leq i_X(\mu_2^c) = \mu_2^c$. Since μ_3 is a fuzzy γ -open set on (X, τ) , i_X is somewhat fuzzy γ -open. But $i_X(\mu_2^c) = \mu_2^c$ is not a fuzzy γ -open set on (X, τ^*) . Hence i_X is not a fuzzy γ -open mapping. **Theorem 3.12.** Let $f : X \to Y$ be a bijection. Then the following are equivalent:

(1) f is somewhat fuzzy irresolute γ -open.

(2) If μ is a fuzzy γ -closed set on X such that $f(\mu) \neq 1_Y$, then there exists a fuzzy γ -closed set $\nu \neq 1_Y$ on Y such that $f(\mu) < \nu$.

Proof. (1) implies (2): Let μ be a fuzzy γ -closed set on X such that $f(\mu) \neq 1_Y$. Since f is bijective and μ^c is a fuzzy γ -open set on X, $f(\mu^c) = (f(\mu))^c \neq 0_Y$. And, since f is somewhat fuzzy irresolute γ -open, there exists a γ -open set $\delta \neq 0_Y$ on Y such that $\delta < f(\mu^c) = (f(\mu))^c$. Consequently, $f(\mu) < \delta^c = \nu \neq 1_Y$ and ν is a fuzzy γ -closed set on Y.

(2) implies (1): Let μ be a fuzzy γ -open set on X such that $f(\mu) \neq 0_Y$. Then μ^c is a fuzzy γ -closed set on X and $f(\mu^c) \neq 1_Y$. Hence there exists a fuzzy γ -closed set $\nu \neq 1_Y$ on Y such that $f(\mu^c) < \nu$. Since f is bijective, $f(\mu^c) = (f(\mu))^c < \nu$. Hence $\nu^c < f(\mu)$ and $\nu^c \neq 0_X$ is a fuzzy γ -open set on Y. Therefore, f is somewhat fuzzy irresolute γ -open.

Theorem 3.13. Let $f : X \to Y$ be a surjection. Then the following are equivalent:

(1) f is somewhat fuzzy irresolute γ -open.

(2) If ν is a fuzzy γ -dense set on Y, then $f^{-1}(\nu)$ is a fuzzy γ -dense set on X.

Proof. (1) implies (2): Let ν be a fuzzy γ -dense set on Y. Suppose $f^{-1}(\nu)$ is not fuzzy γ -dense on X. Then there exists a fuzzy γ -closed set μ on X such that $f^{-1}(\nu) < \mu < 1$. Since f is somewhat fuzzy irresolute γ -open and μ^c is a fuzzy γ -open set on X, there exists a fuzzy γ -open set $\delta \neq 0_Y$ on Y such that $\delta \leq f(\operatorname{Int}\mu^c) \leq f(\mu^c)$. Since f is surjective, $\delta \leq f(\mu^c) < f(f^{-1}(\nu^c)) = \nu^c$. Thus there exists a γ -closed set δ^c on Y such that $\nu < \delta^c < 1$. This is a contradiction. Hence $f^{-1}(\nu)$ is fuzzy γ -dense on X.

(2) implies (1): Let μ be a fuzzy open set on X and $f(\mu) \neq 0_Y$. Suppose there exists no fuzzy γ -open $\nu \neq 0_Y$ on Y such that $\nu \leq f(\mu)$. Then $(f(\mu))^c$ is a fuzzy set on Y such that there exists no fuzzy γ -closed set δ on Y with $(f(\mu))^c < \delta < 1$. This means that $(f(\mu))^c$ is fuzzy γ -dense on Y. Thus $f^{-1}((f(\mu))^c)$ is fuzzy γ -dense on X. But $f^{-1}((f(\mu))^c) = (f^{-1}(f(\mu)))^c \leq \mu^c < 1$. This is a contradiction to the fact that $f^{-1}((f(\nu))^c$ is fuzzy γ -dense on X. Hence there exists a γ -open set $\nu \neq 0_Y$ on Y such that $\nu \leq f(\mu)$. Therefore, f is somewhat fuzzy irresolute γ -open.

References

- K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- 2. I. M. Hanafy, γ-open sets and fuzzy γ-continuity, J. Fuzzy Math. 7 (1999), 419-430.
- Y. B. Im, Fuzzy γ-open sets and γ-irresolute open mappings, Far East J. Math. Sci. 21 (2006), 259-267.

208

- Y. B. Im, J. S. Lee and Y. D. Cho, Somewhat fuzzy precontinuous mappings, J. Appl. Math. & Informatics 30 (2012), 685-691.
- Y. B. Im, J. S. Lee and Y. D. Cho, Somewhat fuzzy pre-irresolute continuous mappings, J. Appl. Math. & Informatics. 30 (2012), 1077-1084.
- Y. B. Im, J. S. Lee and Y. D. Cho, Somewhat fuzzy irresolute continuous mappings, Int. J. Fuzzy Logic and Intelligent Systems, 12 (2012), 319-323.
- Y. B. Im, J. S. Lee and Y. D. Cho, Somewhat fuzzy α-irresolute continuous mappings, Far East J. Math. Sci. 70 (2012), 145-155.
- Y. B. Im, E. P. Lee and S. W. Park Fuzzy γ-irresolute mappings on fuzzy topological spaces, J. Fuzzy Math. 14 (2006), 605-612.
- G. Thangaraj and V. Seenivasan, On somewhat fuzzy γ-continuous functions, J. Fuzzy Math. 19 (2011), 341-352.
- G. Thangaraj and V. Seenivasan, On somewhat fuzzy continuous functions, J. Fuzzy Math. 11 (2003), 725-736.
- G. Thangaraj and V. Seenivasan, On somewhat fuzzy semicontinuous functions, Kybernetika 137 (2001), 165-170.

Young Bin Im received his B.S. and Ph.D. at Dongguk University under the direction of Professor K. D. Park. Since 2009 he has been a professor at Dongguk University. His research interests are fuzzy topological space and fuzzy matrix.

Faculty of General Education, Dongguk University, Seoul 100-715, Korea. e-mail : philpen@dongguk.edu

Joo Sung Lee received his B.S. from Dongguk University and Ph.D. at University of Florida under the direction of Professor B. Brechner. Since 1995 he has been a professor at Dongguk University. His research interests are topological dynamics and fuzzy theory.

Department of Mathematics, Dongguk University, Seoul 100-715, Korea. e-mail: jsl@dongguk.edu

Yung Duk Cho received his B.S. and Ph.D. at Dongguk University under the direction of Professor J. C. Lee. Since 2008 he has been a professor at Dongguk University. His research interests are fuzzy category and fuzzy algebra.

Faculty of General Education, Dongguk University, Seoul 100-715, Korea. e-mail : joyd@dongguk.edu