
J. Appl. Math. & Informatics Vol. 32(2014), No. 1 - 2, pp. 153 - 159
http://dx.doi.org/10.14317/jami.2014.153

WOLFE TYPE HIGHER ORDER SYMMETRIC DUALITY

UNDER INVEXITY†

KHUSHBOO VERMA∗ AND T. R. GULATI

Abstract. In this paper, we introduce a pair of higher-order symmetric

dual models/problems. Weak, strong and converse duality theorems for
this pair are established under the assumption of higher-order invexity.
Moreover, self duality theorem is also discussed.
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1. Introduction

The concept of symmetric duality was first introduced by Dorn [8] for qua-
dratic programming. Later, in non linear programming this concept was sig-
nificantly developed by Dantzig et al. [7], Mond [15] and Bazarra and Goode
[5]. Mangasarian [14] introduced the concept of second and higher-order duality
for nonlinear programming problems, which motivated several authors to work
on second order dualty [3, 4, 9, 10, 11]. Subsequently, higher-order symmetric
duality for nonlinear problems has been studied in [1, 2, 12, 18]. The study of
second and higher-order duality is significant due to the computational advan-
tage over the first-order duality as it provides tighter bounds for the value of
the objective function when approximations are used. Mond and Zhang [16] dis-
cussed the duality results for various higher-order dual problems under invexity
assumptions. For a pair of nondifferentiable programs, Chen [6] also discussed
the duality theorems under higher-order generalized F−convexity. Yang et al.
[19] obtained the duality results for multiobjective higher-order symmetric du-
ality under invexity assumptions.
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Recently, Ahmad [1] discussed higher-order duality in nondifferentiable Mul-
tiobjective Programming. In this paper, we introduce a pair of higher-order
symmetric dual models/problems. Weak, strong and converse duality theorems
for this pair are established under the assumption of higher-order generalized
invexity. Moreover, self duality theorem is also discussed.

2. Preliminaries

Definition 2.1. A function ϕ : Rn 7→ R is said to be higher-order invexity at
u ∈ Rn with respect to η : Rn × Rn 7→ Rn and h : Rn × Rn 7→ R, if for all
(x, p) ∈ Rn ×Rn,

ϕ(x)− ϕ(u)− h(u, p) + pT∇ph(u, p) = ηT (x, u)[∇xϕ(u) +∇ph(u, p)].

Let ∇xyf denote the n×m matrix and ∇yxf denote the m×n matrix of second
order derivative. Also ∇xxf and ∇yyf denote the n× n and m×m symmetric
Hessian matrices with respect to x and y, respectively.

3. Higher order symmetric duality

We consider the following pair of higher order symmetric duals and establish
weak, strong and converse duality theorems.
Primal Problem (WHP):
Minimize
L(x, y, p) = f(x, y) + h(x, y, p)− pT∇ph(x, y, p)− yT [∇yf(x, y) +∇ph(x, y, p)]
subject to

∇yf(x, y) +∇ph(x, y, p) 5 0, (1)

pT [∇yf(x, y) +∇ph(x, y, p)] = 0, (2)

x, y = 0, (3)

Dual Problem (WHD):
Maximize
M(u, v, r) = f(u, v) + g(u, v, r)− rT∇rg(u, v, r)− uT [∇uf(u, v) +∇rg(u, v, r)]
subject to

∇uf(u, v) +∇rg(u, v, r) = 0, (4)

rT [∇uf(u, v) +∇rg(u, v, r)] 5 0, (5)

u, v = 0, (6)

where f : Rn ×Rm 7→ R, g : Rn ×Rm ×Rn 7→ R and h : Rn ×Rm ×Rm 7→ R
are twice differentiable functions.
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Theorem 3.1 (Weak Duality). Let (x, y, p) and (u, v, r) be feasible solutions for
primal and dual problem, respectively. Suppose that
(i) f(., v) is higher-order invexity at u with respect to η1 and g(u, v, r),
(ii) −[f(x, .)] is higher-order invexity at y with respect to η2 and −h(x, y, p),
(iii) η1(x, u) + u+ r = 0,
(iv) η2(v, y) + y + p = 0.
Then

L(x, y, p) = M(u, v, r). (7)

Proof. It is given (x, y, p) is feasible for (WHP) and (u, v, r) is feasible for
(WHD), therefore by the hypothesis (iii) and the dual constraints (4), we get

(η1(x, u)
T + u+ r)[∇xf(u, v) +∇rg(u, v, r)] = 0,

or

(η1(x, u)
T + u)[∇xf(u, v) +∇rg(u, v, r)] = −rT [∇xf(u, v) +∇rg(u, v, r)],

which on using the dual constraint (5) implies that

(η1(x, u) + u)T [∇xf(u, v) +∇rg(u, v, r)] = 0. (8)

Now by the higher order invexity of f(., v) at v with respect to η1 and g(u, v, r),
we get

f(x, v)− f(u, v)− g(u, v, r) + rT∇rg(u, v, r) + uT [∇xf(u, v) +∇rg(u, v, r)] = 0. (9)

Similarly, hypothesis (iv) along with primal constraints (1) and (3) yields

(η2(v, y) + y)T [∇yf(x, y) +∇ph(x, y, p)] 5 0. (10)

Therefore, by higher-order invexity of −[f(x, .)] at y with respect to η2 and
−h(x, y, p), we obtain

f(x, y)− f(x, v) + h(x, y, p)− pT∇ph(x, y, p)− yT [∇yf(x, y) +∇ph(x, y, p)] = 0. (11)

Adding inequalities (9) and (11), we get
f(x, y) + h(x, y, p)− pT∇ph(x, y, p)− yT [∇yf(x, y) +∇ph(x, y, p)]

= f(u, v) + g(u, v, r)− rT∇rg(u, v, r)− uT [∇xf(u, v) +∇rg(u, v, r)].

or

L(x, y, z, p) = M(u, v, w, r).

Thus the result holds. �

Theorem 3.2 (Strong Duality). Let (x̄, ȳ, p̄) be a local optimal solution of
(WHP). Assume that
(i) ∇pph(x̄, ȳ, p̄) is negative definite,
(ii)∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄) ̸= 0,
(iii) ȳT [∇yh(x̄, ȳ, p̄)−∇ph(x̄, ȳ, p̄) +∇yyf(x̄, ȳ)p̄] = 0 ⇒ p̄ = 0,
(iv) h(x̄, ȳ, 0) = g(x̄, ȳ, 0), ∇xh(x̄, ȳ, 0) = ∇rg(x̄, ȳ, 0), ∇yh(x̄, ȳ, 0) = ∇ph(x̄, ȳ, 0).
Then (I) (x̄, ȳ, r̄ = 0) is feasible for (WHD) and
(II) L(x̄, ȳ, p̄) = M(x̄, ȳ, r̄). Also, if the hypotheses of Theorem (3.1) hold for all
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feasible solutions of (WHP) and (WHD), then (x̄, ȳ, p̄ = 0) and (x̄, ȳ, r̄ = 0) are
global optimal solutions of (WHP) and (WHD), respectively.

Proof. Since (x̄, ȳ, p̄) is a local optimal solution of (WHP), there exist α, δ ∈
R, β, ξ ∈ Rm and µ,∈ Rn such that the following Fritz-John conditions [13, 17]
are satisfied at (x̄, ȳ, p̄):
α[∇xf(x̄, ȳ) +∇xh(x̄, ȳ, p̄)−∇pxh(x̄, ȳ, p̄)p̄]

+[∇yxf(x̄, ȳ) +∇pxh(x̄, ȳ, p̄)](β − αȳ − δp̄)− µ = 0, (12)

α[∇yh(x̄, ȳ, p̄)−∇pyh(x̄, ȳ, p̄)p̄−∇ph(x̄, ȳ, p̄)]

+[∇yyf(x̄, ȳ) +∇pyh(x̄, ȳ, p̄)](β − αȳ − δp̄)− ξ = 0, (13)

∇pph(x̄, ȳ, p̄)(β − αp̄− αȳ − δp̄)− δ[∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄)] = 0, (14)

βT [∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄)] = 0, (15)

δp̄T [∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄)] = 0, (16)

x̄Tµ = 0, (17)

ȳT ξ = 0, (18)

(α, β, δ, µ, ξ) = 0, (α, β, δ, µ, ξ) ̸= 0. (19)

Premultiplying equation (14) by (β − αp̄− αȳ − δp̄), we get

(β − αp̄− αȳ − δp̄)
T∇pph(x̄, ȳ, p̄)(β − αp̄− αȳ − δp̄)

−δ(β − αp̄− αȳ − δp̄)
T
[∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄)] = 0,

which along with equations (15), (16) yields

(β − αp̄− αȳ − δp̄)
T∇pph(x̄, ȳ, p̄)(β − αp̄− αȳ − δp̄)

+αδȳT [∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄)] = 0, (20)

Now from equations (1), (19) and (20), we obtain

(β − αp̄− αȳ − δp̄)
T∇pph(x̄, ȳ, p̄)(β − αp̄− αȳ − δp̄) = 0. (21)

Using hypothesis (i) in inequality (21), we have

β = αp̄+ αȳ + δp̄. (22)

This, together with hypothesis (ii) and equation (14), yields

δ = 0. (23)

Now, we claim that α ̸= 0. Indeed if α = 0, then equations (22) and (23) give

β = 0.

Therefore equations (12), (13) and (23), imply µ = 0 and ξ = 0. Hence
(α, β, δ, µ, ξ), a contradiction to (19). Thus

α > 0. (24)

Using equations (13), (22) and (24), we have

[∇yh(x̄, ȳ, p̄)−∇ph(x̄, ȳ, p̄) +∇yyf(x̄, ȳ)p̄] =
ξ

α
,
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or

ȳT [∇yh(x̄, ȳ, p̄)−∇ph(x̄, ȳ, p̄) +∇yyf(x̄, ȳ)p̄] =
ȳT ξ

α
= 0, using (18) (25)

Therefore hypothesis (iii) implies

p̄ = 0. (26)

Moreover, equation (12) along with (22), (26) and hypothesis (iv) yields

α[∇yf(x̄, ȳ) +∇rg(x̄, ȳ, p̄)] = µ,

or

∇yf(x̄, ȳ) +∇rg(x̄, ȳ, p̄) =
µ

α
= 0, (27)

Also using equation (17)

x̄T [∇yf(x̄, ȳ) +∇rg(x̄, ȳ, p̄)] =
x̄Tµ

α
= 0. (28)

Thus (x̄, ȳ, r̄ = 0) satisfies the constraints (4)-(6), that is, it is a feasible solution
for the dual problem (WHD). Now using equations (19), (26), (27) and hypoth-
esis (iv), we get
f(x̄, ȳ) + h(x̄, ȳ, p̄)− p̄T∇ph(x̄, ȳ, p̄)− ȳT [∇yf(x̄, ȳ) +∇ph(x̄, ȳ, p̄)

= f(x̄, ȳ) + g(x̄, ȳ, p̄)− r̄T∇rg(x̄, ȳ, p̄)− x̄T [∇yf(x̄, ȳ) +∇rg(x̄, ȳ, p̄)],

i.e

L(x̄, ȳ, p̄) = M(x̄, ȳ, r̄).

Finally, by Theorem (3.1), (x̄, ȳ, p̄ = 0) and (x̄, ȳ, r̄ = 0) are global optimal
solutions of the respective problems. �

Theorem 3.3 (Strong Duality). Let (ū, v̄, r̄) be a local optimal solution of
(WHP). Assume that
(i) ∇rrg(ū, v̄, r̄) is positive definite,
(ii)∇uf(ū, v̄) +∇rg(ū, v̄, r̄) ̸= 0,
(iii) r̄T [∇uf(ū, v̄) +∇rg(ū, v̄, r̄)] = 0 ⇒ r̄ = 0,
(iv) g(ū, v̄, 0) = g(ū, v̄, 0), ∇ug(ū, v̄, 0) = ∇rg(ū, v̄, 0), ∇vg(x̄, ȳ, 0) = ∇ph(x̄, ȳ, 0).
Then (I) (ū, v̄, p̄ = 0) is feasible for (WHP) and
(II) L(ū, v̄, p̄) = M(ū, v̄, r̄).
Also, if the hypotheses of Theorem (3.1) are satisfied for all feasible solutions
of (WHP) and (WHD), then (ū, v̄, r̄ = 0) and (ū, v̄, p̄ = 0) are global optimal
solutions of (WHD) and (WHP), respectively.

Proof. Follows on the line of Theorem (3.2). �
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4. Self Duality

A mathematical problem is said to be self dual if it formally identical with its
dual, that is, the dual can be rewritten in the form of the primal. In general,
(WHP) is not self-dual without some added restrictions on f, g and h. If f :
Rn ×Rm → R and g : Rn ×Rm ×Rn → R are skew symmetric, i.e

f(u, v) = −f(v, u), g(u, v, r) = −g(v, u, r)

as shown below. By recasting the dual problem (WHD) as a minimization
problem, we have Minimize
M(u, v, r) = −{f(u, v)+g(u, v, r)−rT∇rg(u, v, r)−uT [∇uf(u, v) +∇rg(u, v, r)]}
subject to

∇uf(u, v) +∇rg(u, v, r) = 0,

rT [∇uf(u, v) +∇rg(u, v, r)] 5 0,

u, v = 0.

Now as f and g are skew symmetric, i.e

∇uf(u, v) = −∇uf(v, u)

∇rg(u, v, r) = −∇rg(v, u, r),

then the above problem rewritten as :
Minimize
M(u, v, r) = f(v, u) + g(v, u, r)− rT∇rg(v, u, r)− uT [∇uf(v, u) +∇rg(v, u, r)]
subject to

∇uf(v, u) +∇rg(v, u, r) 5 0,

rT [∇uf(v, u) +∇rg(v, u, r)] = 0,

u, v = 0.

Which is identical to primal problem, i.e., the objective and the constraint
functions are identical. Thus, the problem (WHP) is self-dual.
It is obvious that (x, y, p) is feasible for (WHP), then (y, x, p) is feasible for
(WHD) and vice versa.
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