DOI QR코드

DOI QR Code

Fabrication of EPDM Rubber/Organo-bentonite Composites: Influence of Hydrochloric Acid on the Characteristics of Modified Bentonite and Final Products

EPDM 고무/유기 벤토나이트 복합체의 제조: 개질된 벤토나이트와 최종 생성물의 특성에 대한 염산의 영향

  • Ge, Xin (Department of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Li, Mei-Chun (Department of Energy, Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Cho, Ur Ryong (Department of Energy, Materials and Chemical Engineering, Korea University of Technology and Education)
  • ;
  • ;
  • 조을룡 (한국기술교육대학교 에너지, 신소재, 화학공학부)
  • Received : 2013.08.21
  • Accepted : 2013.09.26
  • Published : 2014.01.25

Abstract

To improve the compatibility of bentonite with rubber matrix, organo-modified bentonite was synthesized with a silane coupling agent, [3-(2-aminoethylamino)propyl]trimethoxysilane (AEAPTMS) in the suspension of bentonite. The structure and characteristics of organo-modified bentonite were investigated using FTIR-spectroscopy, thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Ethylene-propylene-diene monomer (EPDM) rubber/organo-bentonite composites were compounded by a two-roll mill. The vulcanization and mechanical properties were studied. Results showed that the concentration of hydrochloric acid and $H_2O$ in the synthesis had significant influence on the modification of bentonite, which further contributed to the properties of the composites. Filled with 20 phr modified bentonite, the tensile strength and elongation at break of the rubber increased from 1.95 to 4.8 MPa and 300% to 500%, respectively.

고무 매트릭스와 벤토나이트의 상용성을 향상시키기 위하여 유기개질 벤토나이트는 벤토나이트 현탁액에서 실란커플링제인 [3-(2-aminoethylamino)propyl]trimethoxysilane(AEAPTMS)]를 사용하여 합성되었다. 유기개질 벤토나이트의 구조와 특성을 FTIR-spectroscopy, thermogravimetric analysis(TGA) and X-ray diffraction(XRD) 등을 사용하여 분석하였다. Ethylene-propylene-diene monomer(EPDM) 고무와 유기 벤토나이트를 two-roll mill에서 배합하였으며 가황을 하고 물성을 측정하였다. 벤토나이트 개질에 대하여 염산과 물의 농도가 복합체의 물성에 중요한 영향을 미치는 것으로 확인되었다. 벤토나이트의 함량이 20 phr 포함된 복합체의 경우 가장 좋은 물성을 나타내었고 인장강도는 1.95에서 4.8 MPa로 증가되었으며 신장률은 300에서 500%로 증가하는 경향을 보였다.

Keywords

References

  1. E. P. Giannelis, Adv. Mater., 8, 29 (1996). https://doi.org/10.1002/adma.19960080104
  2. M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 1 (2000). https://doi.org/10.1016/S0927-796X(00)00012-7
  3. S. S. Ray and M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  4. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci., 15, 11 (1999). https://doi.org/10.1016/S0169-1317(99)00017-4
  5. J. L. Lblanc, Prog. Polym. Sci., 27, 627 (2002). https://doi.org/10.1016/S0079-6700(01)00040-5
  6. T. Kuila, S. Bhadra, D. H. Yao, N. H. Kim, S. Bose, and J. H. Lee, Prog. Polym. Sci., 35, 1350 (2010). https://doi.org/10.1016/j.progpolymsci.2010.07.005
  7. X. Bai, C. Y. Wang, Y. Zhang, and Y. H. Zhai, Carbon, 49, 1608 (2011). https://doi.org/10.1016/j.carbon.2010.12.043
  8. T. Ramanathan, A. A. Abdala, S. Stankovich, and D. A. Dikin, Nat. Nanotechnol., 3, 327 (2008). https://doi.org/10.1038/nnano.2008.96
  9. M. S. Sohn, K. S. Kim, S. H. Hong, and J. K. Kim, J. Appl. Polym. Sci., 87, 1595 (2003). https://doi.org/10.1002/app.11577
  10. Z. L. Peng, X. Liang, Y. X. Zhang, and Y. Zhang, J. Appl. Polym. Sci., 84, 1339 (2002). https://doi.org/10.1002/app.10112
  11. J. Y. Noh and J. Kim, Polymer(Korea), 25, 691 (2001).
  12. S. W. Jin, K. H. Yu, and H. I. Kim, Polymer(Korea), 11, 487 (2004).
  13. Q. X. Jia, Y. P. Wu, Y. Q. Wang, M. Liu, J. Yang, and L. Q. Zhang, J. Appl. Polym. Sci., 103, 1826 (2007). https://doi.org/10.1002/app.25299
  14. M. Arroyo, M. A. Lopez-Manchado, and B. Herrero, Polymer, 44, 2447 (2003). https://doi.org/10.1016/S0032-3861(03)00090-9
  15. J. I. Velasco, M. Antunes, and O. Ayyad, Polymer, 48, 2098 (2007). https://doi.org/10.1016/j.polymer.2007.02.008
  16. T. M. Wu, E. C. Chen, and C. S. Liao, Polym. Eng. Sci., 42, 1141 (2002). https://doi.org/10.1002/pen.11018
  17. M. Mathialagan and H. Ismail, Polym. Compos., 33, 1993 (2012). https://doi.org/10.1002/pc.22340
  18. S. R. Ha, K. Y. Rhee, H. C. Kim, and J. T. Kim, Colloids Surf. A, 313, 112 (2008).
  19. A. M. Shanmugharaj, K. Y. Rhee, and S. H. Ryu, J. Colloid Interf. Sci., 298, 854 (2006). https://doi.org/10.1016/j.jcis.2005.12.049
  20. N. N. Herrera, J. M. Letoffe, J. L. Putaux, L. David, and E. B. Lami, Langmuir, 20, 1564 (2003).
  21. H. Salmah, A. Faisal, and H. Kamarudin, Int. J. Polym. Mater. Polym. Biomater., 60, 429 (2001).
  22. H. Osman, H. Ismail, and M. Mariatti, Polym. Compos., 33, 609 (2012). https://doi.org/10.1002/pc.22178
  23. M. Buggy, G. Bradley, and A. Sullivan, Composites Part A, 36, 437 (2005). https://doi.org/10.1016/j.compositesa.2004.10.002
  24. M. C. Li, X. Deng, and U. R. Cho, J. Compos. Mater., 44, 1279 (2010). https://doi.org/10.1177/0021998309353964
  25. M. C. Li, X. Ge, and U. R. Cho, Macromol. Res., 21, 519 (2013). https://doi.org/10.1007/s13233-013-1052-3
  26. Y. P. Wu, Y. Q. Wang, and H. F. Zhang, Compos. Sci. Technol., 65, 1195 (2005). https://doi.org/10.1016/j.compscitech.2004.11.016
  27. H. Ismail, P. Pasbakhsh, M. N. Ahmad Fauzi, and A. A. Bakar, Polym. Test., 27, 841 (2008). https://doi.org/10.1016/j.polymertesting.2008.06.007
  28. G. Z. Zhao, L. Y. Shi, X. Feng, W. J. Yu, D. S. Zhang, and J. F. Fu, Appl. Clay Sci., 67, 44 (2012).

Cited by

  1. Synthesis and characterization of microcrystalline cellulose-graft-poly(methyl methacrylate) copolymers and their application as rubber reinforcements vol.132, pp.41, 2015, https://doi.org/10.1002/app.42666
  2. Dielectric Relaxation Spectroscopy in Synthetic Rubber Polymers: Nitrile Butadiene Rubber and Ethylene Propylene Diene Monomer vol.2020, pp.None, 2014, https://doi.org/10.1155/2020/8406059