DOI QR코드

DOI QR Code

ε-Caprolactam과 2-Piperidone으로부터 나일론 6,5 공중합체 제조 및 특성평가

Preparation and Characterization of Nylon 6,5 Copolymers from ε-Caprolactam and 2-Piperidone

  • 김혜영 (한국화학연구원 융합연구본부 바이오화학연구센터) ;
  • 고진선 (한국화학연구원 융합연구본부 바이오화학연구센터) ;
  • 류미희 (한국화학연구원 융합연구본부 바이오화학연구센터) ;
  • 김대수 (충북대학교 공과대학 화학공학과) ;
  • 송봉근 (한국화학연구원 융합연구본부 바이오화학연구센터) ;
  • 이승환 (한국화학연구원 융합연구본부 바이오화학연구센터) ;
  • 박시재 (명지대학교 에너지 환경공학과) ;
  • 제갈종건 (한국화학연구원 융합연구본부 바이오화학연구센터)
  • Kim, Hye Young (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Goh, Jin-Seon (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Ryu, Mi Hee (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Dae Su (Department of Chemical Engineering, Chungbuk National University) ;
  • Song, Bong-Keun (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Lee, Seung Hwan (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology) ;
  • Park, Si-Jae (Department of Environmental Engineering and Energy, Myongji University) ;
  • Jegal, Jonggeon (Research Center for Biobased Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology)
  • 투고 : 2013.07.19
  • 심사 : 2013.09.25
  • 발행 : 2014.01.25

초록

본 연구에서는 바이오매스 기반 나일론 6,5 공중합체를 제조하기 위하여 단량체인 ${\varepsilon}$-caprolactam과 2-piperidone을 glucose로부터 발효공정으로 제조된 lysine과 5-aminovaleric acid로부터 각각 제조하였다. 이들을 potassium tertbutoxide를 촉매로 하고 acetyl-2-caprolactam과 이산화탄소를 개시제로 사용하여 $40^{\circ}C$에서 음이온 개환 중합 방법을 이용하여 나일론 6,5 공중합체를 제조하였다. 제조된 바이오 나일론 6,5 공중합체의 특성을 여러 가지 기기분석 방법으로 분석하였다. 이때 얻어진 고분자의 점도분자량($M_{\eta}$)은 최대 30000 g/mol 정도였으며, 중합 수율은 50% 이상이었다. 이들은 모두 semi-crystalline 고분자로 밝혀졌다. 열 특성 분석 결과 용융온도는 약 $165^{\circ}C$ 정도로 분해온도 $250^{\circ}C$와 큰 차이를 나타내었다. 이들 고분자들은 우수한 가공성과 응용성을 지닐 것으로 예상된다.

To prepare biomass based nylon 6,5 copolymers, ${\varepsilon}$-caprolactam and 2-piperidone, the monomers of nylon 6,5 copolymers, were synthesized respectively from lysine and 5-aminovaleric acid which were produced from glucose by the fermentation process. The copolymers were then polymerized by the anionic ring opening polymerization of them at $40^{\circ}C$, using potassium tert-butoxide as a catalyst and acetyl-2-caprolactam and carbon dioxide as initiators. The prepared copolymers were characterized with various analytical methods: their viscosity molecular weight ($M_{\eta}$) was as high as 30000 g/mol and polymerization yield was over 50%, and it was found that they were semi-crystalline polymers having melting point at $165^{\circ}C$ which was much lower than its thermal degradation point, $250^{\circ}C$. These polymers were expected to have good thermal processability and application fields.

키워드

과제정보

연구 과제번호 : 바이오매스기반 단량체를 이용한 나일론 4중합/생산기술 개발

연구 과제 주관 기관 : 산업부

참고문헌

  1. J. G. Jegal, Korea Soc. Ind. Eng. Chem., 15, 21 (2012).
  2. D. H. Lim, K. J. Bae, D. S. Hong, I. K. Kwon, and J. W. Lee, Biomater. Res., 15, 66 (2011).
  3. J. G. Han, The Monthly Packaging World, 217, 57 (2011).
  4. C. H. Hong, D. S. Han, and B. U. Nam, Polym. Sci. Technol., 21, 321 (2010).
  5. S. J. Park, E. Y. Kim, W. Noh, Y. H. Oh, H. Y. Kim, B. K. Song, K. M. Cho, S. H. Hong, S. H. Lee, and J. G. Jegal, Bioproc. Biosyst. Eng., 36, 885 (2013). https://doi.org/10.1007/s00449-012-0821-2
  6. J. W. Frost, WO 2005123669 (2005).
  7. R. Pellegata, M. Pinza, and G. Pifferi, Commun. Synth., 8, 614 (1978).
  8. E. Stavila and K. Loos, Tetrahedron Lett., 54, 370 (2013). https://doi.org/10.1016/j.tetlet.2012.10.133
  9. J. Roda, J. Krliek, and Z. Boukov, Eur. Polym. J., 13, 119 (1977). https://doi.org/10.1016/0014-3057(77)90149-5
  10. T. Yutaka, P. C. Buenaventurada, U. Charles, and A. Seiichi, J. Mol. Sci., 10, 3722 (2009). https://doi.org/10.3390/ijms10093722
  11. S. C. Kim, Polymer Engineeing I, J. H. Kim, Editor, Hee Joong Dang, 1994.
  12. W. Biao-bing, H. Guo-sheng, Z. Xin, and G. Feng-zhen, J. Mater. Lett., 60, 2715 (2006). https://doi.org/10.1016/j.matlet.2006.01.076
  13. B. Jung, S. K. Choi, and G. W. Seo, J. Korean Chem. Soc., 20, 525 (1976).
  14. J. H. Park, B. Jung, and S. K. Choi, J. Korean Chem. Soc., 24, 167 (1980).
  15. R. J. Gaymans, J. Pieter, and V. Asperen, U. S. Patent 4,446,304 (1982).
  16. B. E. Anshus, K. Katsumoto, and I. M. Serkes, U. S. Patent 4,187,370 (1980).
  17. S. K. Choi, U. S. Patent 3,968,087 (1974).
  18. P. A. Jarovitzky, U. S. Patent 3,683,046 (1970).
  19. W. J. Chung and S. K. Choi, J. Korean Chem. Soc., 23, 6 (1979).
  20. B. Robert, Kensingtion and Calif, U. S. Patent, 4,107,154 (1977).
  21. B. Robert and Calif, U. S. Patent 4,101,531 (1977).
  22. C. S. Ha, M. G. Ko, and W. J. Cho, J. Polym. Sci., 38, 1243 (1997).
  23. H. R. Kricheldorf, B. Coutin, and H. Sekiguchi, J. Polym. Sci., 20, 2353 (1982).
  24. N. V. Lukasheva, A. V. Volokhina, and G. I. Kudryavtsev, Vysokomol. Soyed., 3, 475 (1974).
  25. Y. J. Kim and J. H. Kim, Korea Patent 10-2012-0113559 (2011).
  26. K. Norioki, N. Atsuyoshi, Y. Naoko, T. Sahori, K. Yoshikazu, Y. Noboru, and A. Sei-ichi, J. Polym., 46, 9987 (2005). https://doi.org/10.1016/j.polymer.2005.06.092
  27. N. C. Kim, J. H. Kim, S. W. Nam, B. S. Jeon, Y. T. Yoo, and Y. J. Kim, Polymer(Korea), 37, 211 (2013).