초록
Mitochondria play a crucial role in many essential biological events by way of the electron transport chains and intermembrane proteins that they contain. Abnormalities in the mitochondria are strongly correlated with the development of diseases such as atherosclerosis, cancer, and diabetes. However, the study of mitochondria has been referred to as 'labor-intensive' because of the difficulty in isolating the organelles from their various sources, which can include cultured cells and tissues. Multiple companies provide mitochondria isolation kits, and it is possible for investigators to use different kits and apply different protocols depending on the source of the mitochondria. Therefore, we focused on producing an isolation buffer that could be applied to both cultured cells and tissues, and optimized an isolation protocol that could be used with both. Specifically, we adjusted the buffer condition that can be applied to human cervical cancer cells, fibroblasts, and tissues such as mouse liver and spleen. We also optimized the protocol to improve the efficacy and efficiency of the steps involved in the isolation of mitochondria. These methodological improvements may contribute to advanced research by allowing investigators to overcome the difficulties involved in isolation of mitochondria from biological samples.