참고문헌
- Chien LJ, Lee CK. 2007. Enhanced hyaluronic acid production in Bacillus subtilis by coexpressing bacterial hemoglobin. Biotechnol. Prog. 23: 1017-1022.
- De Mey M, De Maeseneire S, Soetaert W, Vandamme E. 2007. Minimizing acetate formation in E. coli fermentations. J. Ind. Microbiol. Biotechnol. 34: 689-700. https://doi.org/10.1007/s10295-007-0244-2
- Doo EH, Lee WH, Seo HS, Seo JH, Park JB. 2009. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus. J. Biotechnol. 142: 164-169. https://doi.org/10.1016/j.jbiotec.2009.04.008
- Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, et al. 2006. Novel biocatalysts for white biotechnology. Biotechnol. J. 1: 777-786. https://doi.org/10.1002/biot.200600059
- Duetz WA, van Beilen JB, Witholt B. 2001. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419-425. https://doi.org/10.1016/S0958-1669(00)00237-8
- Fery AD, Kallio PT. 2003. Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol. Rev. 27: 525-545. https://doi.org/10.1016/S0168-6445(03)00056-1
- Gardner AM, Gardner PR. 2002. Flavohemoglobin detoxifies nitric oxide in aerobic, but not anaerobic, Escherichia coli. Evidence for a novel inducible anaerobic nitric oxidescavenging activity. J. Biol. Chem. 277: 8166-8171. https://doi.org/10.1074/jbc.M110470200
- Gardner PR, Gardner AM, Martin LA, Salzman AL. 1998. Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 10378-10383. https://doi.org/10.1073/pnas.95.18.10378
- Hausladen A, Gow AJ, Stamler JS. 1998. Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc. Natl. Acad. Sci. USA 95: 14100-14105. https://doi.org/10.1073/pnas.95.24.14100
- Hilker I, Baldwin C, Alphand V, Furstoss R, Woodley J, Wohlgemuth R. 2006. On the influence of oxygen and cell concentration in an SFPR whole cell biocatalytic Baeyer- Villiger oxidation process. Biotechnol. Bioeng. 93: 1138-1144. https://doi.org/10.1002/bit.20829
- Isken S, de Bont JA. 1998. Bacteria tolerant to organic solvents. Extremophiles 2: 229-238. https://doi.org/10.1007/s007920050065
- Jon DS. 1998. Cyclohexanone monopoxygenase: a useful reagent asymmetric Baeyer-Villiger reactions. Curr. Opin. Biotechnol. 2: 195-216.
- Joshi M, Dikshit KL. 1994. Oxygen dependent regulation of Vitreoscilla globin gene: evidence for positive regulation by FNR. Biochem. Biophys. Res. Commun. 202: 535-542. https://doi.org/10.1006/bbrc.1994.1961
- Kallio PT, Kim DJ, Tsai PS, Bailey JE. 1994. Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions. Eur. J. Biochem. 219: 201-208. https://doi.org/10.1111/j.1432-1033.1994.tb19931.x
- Khosla C, Bailey JE. 1988. Heterologous expression of a bacterial haemoglobin improves the growth properties of recombinant Escherichia coli. Nature 331: 633-635. https://doi.org/10.1038/331633a0
- Khosla C, Bailey JE. 1989. Characterization of the oxygendependent promoter of the Vitreoscilla hemoglobin gene in Escherichia coli. J. Bacteriol. 171: 5995-6004. https://doi.org/10.1128/jb.171.11.5995-6004.1989
- Khosla C, Bailey JE. 1989. Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli. Implications for protein function. J. Mol. Biol. 210: 79-89. https://doi.org/10.1016/0022-2836(89)90292-1
- Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology (NY) 8: 849-853. https://doi.org/10.1038/nbt0990-849
- Lee WH, Kim JW, Park EH, Han NS, Kim MD, Seo JH. 2013. Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli. Appl. Microbiol. Biotechnol. 97: 1561-1569. https://doi.org/10.1007/s00253-012-4431-3
-
Lee WH, Park JB, Park K, Kim MD, Seo JH. 2007. Enhanced production of
$\varepsilon$ -caprolactone by overexpression of NADPHregenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl. Microbiol. Biotechnol. 76: 329-338. https://doi.org/10.1007/s00253-007-1016-7 - Leisch H, Mortey K, Lau PC. 2011. Baeyer-Villiger monooxygenases: more than just green chemistry. Chem. Rev. 111: 4165-4222. https://doi.org/10.1021/cr1003437
- Park JB. 2007. Oxygenase-based whole-cell biocatalysis in organic synthesis. J. Microbiol. Biotechnol. 17: 379-392.
- Ramandeep, Hwang KW, Raje M, Kim KJ, Stark BC, Dikshit KL, Webster DA. 2001. Vitreoscilla hemoglobin. Intracellular localization and binding to membranes. J. Biol. Chem. 276: 24781-24789. https://doi.org/10.1074/jbc.M009808200
- Sanny T, Arnaldos M, Kunkel SA, Pagilla KR, Stark BC. 2010. Engineering of ethanolic E. coli with the Vitreoscilla hemoglobin gene enhances ethanol production from both glucose and xylose. Appl. Microbiol. Biotechnol. 88: 1103-1112. https://doi.org/10.1007/s00253-010-2817-7
- Walton AZ, Stewart JD. 2002. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions. Biotechnol. Prog. 18: 262-268. https://doi.org/10.1021/bp010177c
- Walton AZ, Stewart JD. 2004. Understanding and improving NADPH-dependent reactions by nongrowing Escherichia coli cells. Biotechnol. Prog. 20: 403-411.
- Zhang L, Li Y, Wang Z, Xia Y, Chen W, Tang K. 2007. Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering. Biotechnol. Adv. 25: 123-136. https://doi.org/10.1016/j.biotechadv.2006.11.001
- Zhao H, van der Donk WA. 2003. Regeneration of cofactors for use in biocatalysis. Curr. Opin. Biotechnol. 14: 583-589. https://doi.org/10.1016/j.copbio.2003.09.007
피인용 문헌
- Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineeredSaccharomyces cerevisiae vol.10, pp.12, 2014, https://doi.org/10.1002/biot.201500068
- Mechanistic insights into the ring-opening of biomass derived lactones vol.6, pp.16, 2014, https://doi.org/10.1039/c5ra22832h
- Tuning of the enzyme ratio in a neutral redox convergent cascade: A key approach for an efficient one‐pot/two‐step biocatalytic whole‐cell system vol.116, pp.11, 2019, https://doi.org/10.1002/bit.27133